18 автотрансформаторы особенности конструкции принцип действия. Чем отличается автотрансформатор от трансформатора, устройство, назначение, принцип действия. Можно выделить такие преимущества

Автотрансформатор - это устройство для изменения напряжения переменного тока при сохранении его частоты, основанное на эффекте электромагнитной индукции, которое имеет одну общую обмотку на магнитопроводе и не менее трёх выводов от неё.

Если простыми словами, то автотрансформаторы - это разновидность обычных трансформаторов напряжения, в которых есть всего одна обмотка, часть витков которой выполняют функцию первичной обмотки, а часть вторичной.

Для лучшего понимания, давайте рассмотрим устройство наиболее распространенного типа автотрансформаторов.

Устройство автотрансформатора

Чаще всего стандартный автотрансформатор представляет собой тороидальный магнитопровод - сердечник, сделанный из электротехнической стали в виде кольца, на который намотана медная проволока - называемая обмоткой.

Кроме того, чтобы эта конструкция служила именно автотрансформатором, у неё есть дополнительная «отпайка» - отвод от этой обмотки, всего контактов получается, как минимум три.

Устройство автотрансформатора достаточно наглядно показано на изображении ниже:

В данном примере, вы можете видеть автотрансформатор, к крайним контактам которого подключается источник напряжения переменного тока, к A - фаза , к X - ноль . Все витки проволоки между этими точками считаются первичной обмоткой.

Нагрузка, какой-нибудь электроприбор, которому для работы требуется меньшее напряжение, чем поступает из сети, подключается к выводам a2 и X - витки между этими контактами - это уже вторичная обмотка.

Как видите, у автотрансформатора есть всего одна обмотка, но при этом напряжение, если замерять в различных точках подключения, будет разным, почему оно меняется и как определить насколько (коэффициент трансформации) мы рассмотрим ниже.

Обозначение автотрансформатора на схемах

Кстати, вы довольно легко на любой схеме определите автотрансформатор и отличите его от обычного трансформатора, чаще всего он обозначается вот так :

Как видите, схематически у автотрансформатора показаны все его основные элементы: прямая линия - это стальной сердечник, с одной стороны которого расположена единственная обмотка - в виде волнистой линии, от которой идёт несколько отводов.

Перепутать с обычным трансформатором не получится, ведь у него на схеме будет как минимум две обмотки по сторонам от сердечника.

Более подробно о принципиальных различиях автотрансформатора и обычного трансформатора напряжения, я расскажу во второй части этой статьи.

Принцип работы автотрансформатора

А сейчас, для лучшего понимания основного принципа работы автотрансформаторов, рассмотрим процессы, которые в них происходят.

В качестве примера, мы возьмем автотрансформатор, который может как повышать напряжение на выходе, так и уменьшать его, относительно начального. Общее количество витков медного провода у него, для удобства расчетов, равно 20, выглядит он следующим образом:

Как видите, у такой модели, есть уже четыре точки подключения к общей обмотке: A1, a2, a3 и X .

К контактам A1 и N - подключается источник переменного электрического тока, например, питание стандартной городской электросети, с напряжением(U1), в нашем случае это стандартные 220В. Всего между этими точками 18 витков медной проволоки, этот участок спирали обозначен как W1, он считается первичной обмоткой автотрансформатора.

Что происходит при подаче напряжения на автотрансформатор

При протекании переменного тока по обмотке, в сердечнике (магнитопроводе) автотрансформатора, образуется переменный магнитный поток, который циркулирует по замкнутому магнитному сердечнику, пронизывая ВСЕ витки обмотки.

Проще говоря, при подключении тока к первичной обмотке - в нашем примере к 18 виткам, магнитный поток протекая по сердечнику пронизывает всю обмотку, все 20 витков. Напряжение же на первичной обмотке (в точках подключения A1 и X ) остаётся 220В или, если распределить на каждый виток 220/18 = 12.222… Вольта на каждый.

Теперь, чтобы узнать какое напряжение образуется на всех 20 витках, к точкам a2 и X , подключим нагрузку, какой-нибудь электроприбор - это будет вторичная обмотка автотрансформатора. На схеме условно обозначим нагрузку, некий электроприбор подключеный к этой обмотке, напряжение U2, а число витков между контактами W2 = 20.

Зависимость между обмотками у автотрансформатора, выражается следующей формулой:

U1/w1 = U2/w2 , где U1 напряжение на первой обмотке, U2 напряжение на второй обмотке, w1 число витков первой обмотки, w2 число витков второй обмотки.

Из этой формулы следует что напряжение на вторичной обмотке изменяется относительно напряжения первичной обмотки, пропорционально разнице витков. В нашем примере на один виток первичной обмотки приходится 12.22.. Вольт, у вторичной же обмотки витков больше на 2, соответственно общее напряжение обмотки выше на 24.44..Вольта.

Это доказывает нехитрый расcчет:

U1/w1 = U2/w2,

220 Вольт/18 Витков=U2/20 Витков,

U2 = 220*20/18 = 244.44В

Автотрансформатор, у которого на вторичной обмотке напряжение увеличивается называется повышающий.

Зная зависимость между обмотками, мы можем вычислить коэффициент трансформации , величину, которая позволяет легко определять, изменение входящих параметров (напряжения, сопротивления, силы тока) на вторичной обмотке.

К оэффициент трансформации вычисляется по следующей формуле: U1/U2=w1/w2

В нашем случае получается 220/244,44=18/20=0,9

Теперь давайте посмотрим, как изменится напряжения на оставшихся контактах.

Подключаем нагрузку к контактам a3 и X нашего автотрансформатора, число витков w3 у этой обмотки равно 16, напряжение обозначим как U3.

Следуя той же формуле, рассчитываем напряжение:

U1/w1 = U3/w3 = 220/18=U3/16, от сюда следует, что U3 =220*16/18 = 195,55.. Вольт, а коэффициент трансформации U1/U3=w1/w3=220/195,55=18/16=1,125 , эта обмотка понижающая.

Автотрансформатор, у которого на вторичной обмотке напряжение уменьшается называется понижающий.

Теперь, зная коэффициенты трансформации на всех выводах автотрансформатора мы легко сможем определять, например, какое будет напряжение на вторичной обмотке, если изменится напряжение источника электрического тока:

Так, например, при напряжении источника переменного тока на первичной обмотке 200В, у этого трансформатора:

На контактах a2 и X , при коэффициенте трансформации k1=0,9 напряжением будет U2=200В/0,9= 222,22 В

На контактах a3 и X , при коэффициенте трансформации k2=1,125 напряжение равняется U3=200/1,125=177,77 В

ПРАВИЛО: Если коэффициент трансформации k>1 - то трансформатор понижающий, если же k<1, то повышающий.

Чаще всего стандартный автотрансформатор имеет большее количество выводов, чем в нашем примере, большее количество ступеней для регулировки входящего напряжения или тока.

Логическим развитием автотрансформаторов, стало появление так называемых РЕГУЛИРУЕМЫХ АВТОТРАНСФОРМАТОРОВ, у которых нет множество дополнительных отпаек с разным коэфициентом трансформации, а количество витков вторичной обмотки, изменяется путем перемещения подвижного контакта по ней - подробнее об этом читайте .

Изменение силы тока в автотрансформаторе

По силе тока есть простое правило - ток в обмотке более высокого напряжения меньше, чем ток в обмотке с более низким напряжением.

Другими словами, если используется понижающий отвод от первичной обмотки автотрансформатора - то ток на вторичной обмотке будет больше, а напряжение ниже и наоборот, если используется повышающий отвод - то ток на вторичной обмотке будет ниже, а напряжение выше.

Мощности же на обеих обмотках примерно одинаковы, поэтому, согласно закону ОМА:

I1U1 = I2U2, где I1 - ток в первичной обмотке, I2 - ток во вторичной обмотке, U1- напряжение в первичной обмотке, U2 - Напряжение во вторичной обмотке.

Соответственно ток, например, в первичной обмотке рассчитывается так: I1 = U2*I2/U1

Зная, как изменяется ток, можно заранее правильно подобрать кабели питания и защитную автоматику.

Теперь, когда вы знакомы с принципом работы автотрансформатора и знаете его конструкцию, давайте рассмотрим какие они бывают , их назначение и места применения, какие у них плюсы и минусы и чем принципиально отличаются от обычных трансформаторов. Всё это и многое другое читайте во второй части этой статьи. Подписывайтесь на нашу группу вконтакте, следите за выходом новых материалов!

Его достоинства и недостатки

Основное конструктивное отличие автотрансформатора от трансформатора состоит в том, что в автотрансформаторе часть обмотки ВН является обмоткой НН. В связи с этим энергия из первичнойцепи во вторичную передается не только за счет магнитной связи между этими цепями, но и за счет непосредственной электрической связи этих цепей. Рассмотрим работу однофазного понижающего автотрансформатора (рис. 3.2, а).

Участок обмотки аХ--общий для первичной и вторичной цепей. Пренебрегая током х. х., запишем уравнение МДС:

I1 w AX + w aX I2=0.

Разделив это уравнение на число витков обмотки w AX , получим уравнение токов автотрансформатора:

I 1 + I 2 (w aX / w AX)=0, или I 1 = - I 2 / k A , (3.5)

где k A = w AX /w aX -- коэффициент трансформации автотрансформатора.-

По общей части витков аХ обмотки автотрансформатора проходит ток I12, равный алгебраической сумме токов, т. е.

I 12 = I 1 + I 2 . (3.6)

В понижающем автотрансформаторе вторичный ток больше первичного, т. е. I2>I1. Из этого следует, что в этом трансформаторе ток I12 в общей части витков аХ равен разности вторичного и первичного токов:

I12 =I 2 -I1. (3.7)

Если коэффициент трансформации автотрансформатора немногим больше единицы, то токи I1 и I2 мало отличаются друг от друга, а их разность составляет небольшую величину. Это позволяет выполнить часть аХ обмотки автотрансформатора из провода меньшего сечения.

Введем понятие проходной мощности автотрансформатора, пред- ставляющей собой всю передаваемую мощность Sпp=U2I2 из первичной цепи во вторичную. Кроме того, различают еще расчетную мощность Sрасч, представляющую собой мощность, передаваемую из первичной во вторичную цепь магнитным полем. Расчетной эту мощность называют потому, что размеры и вес трансформатора зависят от величины этой мощности. В трансформаторе вся проходная мощность является расчетной, так как между обмотками трансформатора существует лишь магнитная связь. Но в автотрансформаторе между первичной и вторичной цепями помимо магнитной связи существует еще и электрическая. Поэтому расчетная мощность составляет лишь часть проходной мощности, другая ее часть передается между цепями без участия магнитного поля. В подтверждение этого разложим проходную мощность автотрансформатора Sпр=I2U2 на составляющие. Воспользуемся для этого выражением (3.7), из которого следует, что I 2 =I1+I 12 . Подставив это выражение в формулу проходной мощности, получим

S np =U2I2=U 2 (I 1 +I 12)=U 2 I 1 +U 2 I 12 =S э + S расч. " (3.8)

Здесь S э --U 2 I1 -- мощность, передаваемая из первичной цепи автотрансформатора во вторичную благодаря электрической связи между этими цепями.

Таким образом, расчетная мощность в автотрансформаторе S рас = U 2 I12 составляет лишь часть проходной. Это дает возможность для изготовления автотрансформатора использовать магни-топровод меньшего сечения, чем в трансформаторе равной мощности.

Средняя длина витка_обмотки также становится меньше; следовательно, уменьшается расход меди на выполнение" обмотки авто-трансформйтораГ Одновременно уменьшаются магнитные и электрические потери, а КПД автотрансформатора повышается^

Таким образом, автотрансформатор по сравнению с трансформатором равной мощности обладает следующими преимуществами: меньшим расходом активных материалов (медь и электротёх"ничё-ская сталь), более высоким КПД, меньшими размерами и стоимостью. У автотрансформаторов большой мощности КПД достигает 99,7%.

Указанные преимущества автотрансформатора тем значительнее, чем больше мощность S Э, а следовательно, чем меньше расчетная часть проходной мощности.

Мощность S Э, передаваемая из первичной во вторичную цепь благодаря электрической связи между этими цепями, определяется выражением

Sэ = U2I1 = U2I2/kA = S пр /k A , (3.9)

т. е. величина мощности S э обратно пропорциональна коэффициенту трансформации автотрансформатора k A .

Из графика, изображенного на рис. 3.3, видно, что применение автотрансформатора дает заметные преимущества по сравнению с двухобмоточным трансформатором лишь при небольших значениях коэффициента трансформации. Например, при k A = вся мощность автотрансформатора передается во вторичную цепь за счет электрической связи между цепями (S э /Sпр=1).

Наиболее целесообразно применение автотрансформаторов с коэффициентом трансформации k A 2. При большой величине коэффициента трансформации преобладающее значение имеют недостатки автотрансформатора, состоящие в следующем:

Большие токи к.з. в случаях понижающего автотрансформатора: при замыкании точек а и X (см. рис. 3.2, а) напряжение U1 подводится лишь к небольшой части витков Аа, которые обладают очень малым сопротивлением к.з. В этом случае автотрансформаторы не могут защитить сами себя от разрушающего действия токов к.з., поэтому токи к.з. должны ограничиваться сопротивлением других элементов электрической установки, включаемых в цепь автотрансформатора.

Электрическая связь стороны ВН со стороной НН; это требует усиленной электрической изоляции всей обмотки.

При использовании автотрансформаторов в схемах понижения напряжения между проводами сети НН и землей возникает напряжение, приблизительно равное напряжению между проводом и землей на стороне ВН.

В целях обеспечения электробезопасности обслуживающего персонала нельзя применять автотрансформаторы для питания цепей НН от сети ВН.

Главное отличие автотрансформатора от обычного трансформатора состоит в том, что две его обмотки обязательно имеют между собой электрическую связь, они наматываются на одном стержне, мощность передается между обмотками комбинированным способом - путем электромагнитной индукции и электрического соединения. Это снижает габариты и стоимость машины (причины и расчет этого факта приведены ниже). Автотрансформатор может быть сделан двухобмоточным и многообмоточным, в каждой из этих модификаций автотрансформаторов обязательно присутствуют обмотки ВН (высшего напряжения - вход ) и СН (среднего напряжения - выход ), электрически соединенные между собой. В многообмоточных моделях имеется еще одна или несколько обмоток НН (низкого напряжения ), которая имеет с первыми двумя только индуктивную электромагнитную связь. В трехфазном автотрансформаторе обмотки ВН и СН соединяются в звезду с глухозаземленной нейтралью U 0 (точка 0 на рис. 1), а обмотки НН обязательно соединены в треугольник Ñ. По рисунку 1 видно, что обмотка ВН включает в себя общую обмотку ОА m , которая, собственно, и составляет обмотку СН, и последовательной обмотки А m А.

Распределение токов, в работающем автотрансформаторе в режиме номинальной нагрузки, между обмотками неодинаково. В последовательной обмотке А m Апроходит ток нагрузки ВН - I А. По закону электромагнитной индукции в сердечнике автотрансформатора создается магнитный поток, который индуктирует в обмотке СН ток I Am . Таким образом, ток общей обмотки СН образован суммой токов последовательной обмотки I А с электрической связью (ВН и СН), и тока I Am , по магнитной связи этих же обмоток - I СН =I А +I Am .

Рис. 1. Обмотки автотрансформатора: 1- трехфазного; 2- однофазного

Значение мощности на выходе автотрансформатора равно мощности на его входе. При отсутствии обмотки НН, мощность ВН равна мощности СН, это и есть номинальная мощность S ном автотрансформатора по электрической связи. Она равна произведению номинального напряжения обмотки ВН U ВН, на номинальный ток I ВН последовательной обмотки.

Рассчитывают еще и типовую мощность автотрансформатора называют, которая составляет часть номинальной мощности, передаваемой электромагнитным путем.

S т =S ном* а в , где а в =1-U СН /U ВН - коэффициент выгодности автотрансформатора. Он определяет долю типовой мощности в составе номинальной, чем она меньше, тем меньше габариты и сечения сердечника (магнитопровода) и обмоток автотрансформатора, которые рассчитываются исходя не из полной номинальной, а только из её части - типовой мощности. Поэтому изготовление автотрансформаторов значительно дешевле, чем обычных трансформаторов такой же мощности.

Мощность на общей обмотке является одним из главных параметров, которые нужно контролировать при работе автотрансформатора, превышение её в длительном режиме недопустимо. На рисунке 1 показаны варианты подключения амперметра для измерения нагрузки на общей обмотке при и варианте автотрансформатора.

Чем меньше коэффициент трансформации (чем ближе значения U СН и U ВН), тем выгоднее использование автотрансформаторов и дешевле их изготовление.

Еще одним большим достоинством автотрансформаторов можно назвать возможность регулированиянапряжения под нагрузкой без прерывания питания потребителей. Для большинства автотрансформаторов используется способ переключения ответвлений регулировочной обмотки. Эти регулировочные ответвления берутся от менее нагруженной обмотки ВН, особые устройства - переключатели ответвлений изменяют число включенных в работу витков, тем самым увеличивая или уменьшая коэффициент трансформации и напряжение выхода. Такое регулирование возможно в ручном и автоматическом режимах (при помощи следящих систем с обратной связью, это делает автотрансформатор стабилизатором напряжения). Требования к качеству выходного напряжения для питания потребителей обуславливают применение и важность таких устрйств.

На рисунке 2 показаны схемы регулирования напряжения выхода А mна автотрансформаторе на стороне ВН (1) и на стороне СН (2). Таковы устройство и принципы работы автотрансформаторов.

Автотрансформатор отличается от трансформатора тем, что у него обмотка низшего напряжения является частью обмотки высшего напряжения, причем она выполняется из проводников, в общем случае отличающихся по сечению от проводников другой части, и обычно располагается относительно другой части, как показано на рисунке 6.4. Следовательно, части Аа и аХ можно рассматривать как обмотки двухобмоточного трансформатора, имеющие между собой не только магнитную связь, но и электрическую.

Автотрансформаторы могут служить как для понижения, так и для повышения напряжения. Они выполняются для небольших коэффициентов трансформации, не сильно отличающихся от единицы, и экономичнее в работе и требуют на изготовление меньше материалов, чем обычные двухобмоточные трансформаторы на ту же номинальную мощность.

Автотрансформаторы тем экономичнее по сравнению с двухобмоточными трансформаторами, чем ближе ω2 к ω1, т. е. чем ближе коэффициент трансформации к единице. Так как веса обмотки и стали сердечника автотрансформатора меньше весов тех же материалов двухобмоточного трансформатора, то и потери в нем меньше, а к. п. д. выше при той же мощности

Недостатком автотрансформатора является то, что здесь вторичная цепь оказывается электрически соединенной с первичной цепью. Она должна иметь такую же изоляцию по отношению к земле, как и первичная цепь. Это обстоятельство заставляет выбирать значение коэффициента трансформации автотрансформатора при высоких напряжениях не выше 2-2,5.

Автотрансформаторы бывают однофазные и трехфазные. Однофазный автотрансформатор (рисунок 10) представляет собой однообмоточный трансформатор с числом витков , вторичной обмоткой которого является часть первичной обмотки, т. е. . Обмотка трансформатора размещается на замкнутом сердечнике из электротехнической стали.

Рисунок 10-Схема однофазного автотрансформатора

Принцип действия авто­трансформатора состоит в следующем: при подключении обмотки в сеть переменного тока напряжением U1, в ней создается переменное магнитное поле, которое возбуждает во всей обмотке ЭДС Е1, а в части обмотки с числом витков w2 - ЭДС Е2. Величина Е2 зависит от числа витков и выражается формулой:

где е - ЭДС индукции в одном витке.

Е1, и Е2 по правилу Ленца имеют знаки, противоположные напряжению U1, а следовательно, и ток 12, созданный Е2, будет иметь направление, противоположное I1. Таким образом, в части обмотки ВС ( 2) будет проходить ток I2-I1, а в части AC () - ток I2. Это приводит к уменьшению тепловых потерь в обмотках автотрансформатора по сравнению с двухобмоточным трансформатором и к увеличению КПД. Витки обмотки можно сделать из провода меньшего сечения, что дает экономию меди и других материалов, уменьшает габариты автотрансформатора.

Для плавного изменения снимаемого напряжения применяют автотрансформаторы со скользящим контактом (контакт С на рисунке 10). Подобные трансформаторы нашли широкое применение в лабораторной практике и называются лабораторными автотрансформаторами (ЛАТР).

Автотрансформаторы находят себе применение в качестве пусковых для пуска больших синхронных двигателей и короткозамкнутых асинхронных двигателей, для осветительных установок (для дуговых ламп переменного тока), для связи сетей с напряжениями, мало отличающимися одно от другого.

Автотрансформаторы выполняются также с устройством, позволяющим плавно регулировать их вторичное напряжение. Регулирование напряжения осуществляется путем изменения числа витков обмотки при помощи специальных переключателей или контакта, перемещаемого непосредственно по обмотке, очищенной с одной стороны от изоляции.

Трансформаторы являются довольно разнообразной группой оборудования, имеющей существенные внутренние различия по назначению и конструктивным особенностям. Кроме того, работа различного оборудования требует различного напряжения. Существуют средние значения. Которые учитываются при составлении технического допуска на подключение. Например, домашние бытовые приборы рассчитаны на 220, а то и на 110 В. А вот оборудование промышленного типа использует 380 В. Для них предусмотрены свои варианты, более легкие и недорогие. Но прежде чем решиться на использование, следует знать в чем разница между трансформатором и автотрансформатором.

Для чего снижают напряжение?

Передача электроэнергии на дальние расстояния требует высоких показателей напряжения, в противном случае потери при транспортировке энергии сделают процесс нерентабельным. Но, чтобы использовать электроэнергию в промышленных и, тем более, бытовых целях, требуется ее снижение. Делается это постепенно, благодаря системе трансформаторов, а также их более мобильных аналогов — автотрансформаторов.

Несмотря на то, что все приборы такого типа призваны преобразовать исходное напряжение до желаемого, трансформаторы можно разделить на два типа. Первые — повышающие — увеличивают напряжение, поддерживая его на достаточном уровне для продолжения транспортировки или для использования в промышленных целях. Вторые — понижающие — напротив, снижают напряжение, позволяя использовать энергию в бытовых целях.

Что представляют собой оба устройства?

Любой трансформатор — это прибор статического типа, который преобразует переменный ток, частоту, а также число фаз. Это устройство включает в себя две или больше обмоток, которые наматываются на один для всех сердечник из стали. Одна из обмоток обязательно должна быть подключена к источнику переменного тока. Остальные могут быть соединены с конечными потребителями. В результате между ними наблюдается как электромагнитная, так и электрическая связи. Дополнительно обмотка автотрансформатора оснащена тремя и более выводами, то есть имеется возможность подключаться к разным выводам и, соответственно, получать разные значения напряжения.

В основе принципа работы лежит небезызвестная электромагнитная индукция. Проще говоря, меняющийся при прохождении через обмотку магнитный поток образует в ней электродвижущую силу.

Такой тип трансформаторов прекрасно подходит для смены напряжения в сравнительно малом диапазоне.

В чем отличия трансформатора от автоварианта?

Разница между трансформатором и автотрансформатором — это число обмоток. Больше - у трансформаторов, автотрансформаторы имеют всего один экземпляр.

Очевидные плюсы автовариантов обнаруживаются при применении в сетях с уровнем напряжения от 150 кВ и более. Эти приборы дешевле, да и потери в обмотках у них на порядок меньше. Размером автотрансформаторы тоже уступают своим статичным аналогам.

Помимо этого, у автотрансформаторов гораздо выше коэффициент полезного действия. Такое возможно благодаря частичному преобразованию мощности. Стоимостные преимущества же обосновываются меньшим расходом материалов, а соответственно, меньшей массой и большей компактностью.