Генератор тесла в домашних условиях. Бестопливный генератор теслы своими руками. Нынешние и классические разработки

Новомодный феномен резонансного трансформатора Николы Тесла возник недавно, а Интернет забит фотографиями и интригующими видеосъемками молний и коронарных разрядов.

Вспомним, что трансформатор первоначально был предназначен не для показательных выступлений, а для передачи радиосигналов на далекие расстояния. В связи с этим предлагаю ознакомиться с его принципом работы и найти ему практическое применение.

Трансформатор Тесла состоит из двух основных цепей, первичной и вторичной, см. рис. 1а.

1. Первичная цепь, как генерирующая колебания определенной частоты, состоит из высоковольтного источника питания, накопительного конденсатора С1, разрядника и катушки связи L1. Когда искровой промежуток находится в проводящем состоянии, LC–элементы связаны последовательно, формируя цепь определенной частоты.

2. Вторичной цепью является последовательный колебательный контур, который состоит из резонансной катушки индуктивности L2, открытой емкостью С, образованной заземлением и сферой, см. рис. 1а.

Частоты колебаний обоих цепей определены их структурными параметрами и должны совпадать. Выходное напряжение трансформатора Тесла исчисляется десятками тысяч вольт благодаря повышенному количеству витков во вторичной цепи. Вторичная цепь резонансного трансформатора Тесла, это открытый колебательный контур, который был открыт ранее Дж. К. Максвеллом.

Обратимся к классической теории принципа действия открытого колебательного контура

Как известно колебательный контур состоит из катушки индуктивности и конденсатора. Исследуем простейший колебательный контур, катушка которого состоит из одного витка, а конденсатор представляет собой две рядом расположенные металлические пластины. Подадим в разрыв индуктивности контура 1 переменное напряжение от генератора, см. рис.2а. В витке потечет переменный ток и создаст вокруг проводника магнитное поле. Это сможет подтвердить магнитный индикатор в виде витка, нагруженного лампочкой. Для того, что бы получить открытый колебательный контур, раздвинем пластины конденсатора. Мы наблюдаем, что лампа индикатора магнитного поля продолжает гореть. Чтобы лучше понять, что происходит в данном опыте, смотри рис. 2а. По витку контура 1 течёт ток проводимости, который вокруг себя создает магнитное поле Н, а между пластинами конденсатора — равный ему так называемый ток смещения. Несмотря на то, что между пластинами конденсатора нет тока проводимости, опыт показывает, что ток смещения создаёт такое же магнитное поле, как и ток проводимости. Первым, кто об этом догадался, был великий английский физик Дж. К. Максвелл.

В 60-х годах 18-го столетия, формулируя систему уравнений для описания электромагнитных явлений, Дж. К. Максвелл столкнулся с тем, что уравнение для магнитного поля постоянного тока и уравнение сохранения электрических зарядов переменных полей (уравнение непрерывности) несовместимы. Чтобы устранить противоречие, Максвелл, не имея на то никаких экспериментальных данных, постулировал, что магнитное поле порождается не только движением зарядов, но и изменением электрического поля, подобно тому, как электрическое поле порождается не только зарядами, но и изменением магнитного поля. Величину, где электрическая индукция, которую он добавил к плотности тока проводимости, Максвелл назвал током смещения. У электромагнитной индукции появился магнитоэлектрический аналог, а уравнения поля обрели замечательную симметрию. Так, умозрительно был открыт один из фундаментальнейших законов природы, следствием которого является существование электромагнитных волн.

Раз так, убедимся еще раз, что происходит, когда закрытый колебательный контур превращается в открытый и как можно обнаружить электрическое Е-поле? Для этого рядом с колебательным контуром поместим индикатор электрического поля, это вибратор, в разрыв которого включена лампа накаливания, она пока не горит. Постепенно раскрываем контур, и мы наблюдаем, что лампа индикатора электрического поля загорается, рис. 2б. Электрическое поле теперь не сосредоточено между пластинами конденсатора, его силовые линии идут от одной пластины к другой через открытое пространство. Таким образом, мы имеем экспериментальное подтверждение утверждения Дж. К. Максвелла, что емкостной излучатель порождает электромагнитную волну. Никола Тесла обратил на этот факт внимание, что при помощи совсем не больших излучателей можно создать достаточно эффективный прибор для излучения электромагнитной волны. Так родился резонансный трансформатор Н. Тесла. Проверим и этот факт, для чего вновь рассмотрим назначение деталей трансформатора.

И так, геометрические размеры сферы и технические данные катушки индуктивности определяют частоту последовательного резонанса, которая должна совпадать с частотой генерации разрядника.

Только режим последовательного резонанса позволяет трансформатору Тесла достигать таких величин напряжений, что на поверхности сферы появляется коронарный разряд и даже молнии.

Рассмотрим работу трансформатора Тесла, как последовательного колебательного контура:

Этот контур необходимо рассматривать как обычный LC–элемент, рис. 1а.б, а так же рис. 2а, где включены последовательно индуктивность L, открытый конденсатор С и сопротивление среды Rср. Угол сдвига фаз в последовательном колебательном контуре между напряжением и током равен нулю (?=0), если ХL = -Хс, т.е. изменения тока и напряжения в нем происходят синфазно. Это явление называется резонансом напряжений (последовательным резонансом). Следует отметить, что при понижении частоты от резонанса, ток в контуре уменьшается, а резонанс тока несет емкостной характер. При дальнейшей расстройке контура и понижении тока на 0,707, его фаза смещается на 45 градусов. При расстройке контура вверх по частоте, он приобретает индуктивный характер. Это явление часто используют в фазоинверторах.

Рассмотрим схему последовательного колебательного контура изображенную на рис. 3, где добротности контура Q может находиться в пределах 20-50 и много выше.

Здесь полоса пропускания определяется добротностью контура:

Тогда напряжение на пластинах излучателя будет выглядеть согласно следующей формуле:

U2 = Q * U1

Напряжение U2 согласно расчетам составляет 2600В, что подтверждается практической работой трансформатора Тесла. В таблице 1 расчетные данные приведены для частоты 7.0 МГц не случайно, это дает возможность любому желающему коротковолновику провести радиолюбительский эксперимент в эфире. Здесь входное напряжение U1 условно взято за 100 Вольт, а добротность за 26.

Таблица 1

f (МГц) L (мкГн) ХL (Ом) C (пФ) −Xc (Ом) ?f (кГц) Q U1/U2 (В)
7 30,4 1360 17 1340 270 26 100/2600

Данное утверждение приемлемо в тех случаях, когда отсутствует изменение частоты или сопротивления нагрузки данного контура. В трансформаторе Н. Тесла оба фактора постоянны по определению.

Полоса пропускания трансформатора Тесла зависит от нагрузки, т.е., чем выше связь открытого конденсатора С (сфера-земля) со средой, тем больше нагружен контур, тем шире его полоса пропускания. Это связано с увеличением тока смещения. Тоже происходит с колебательным контуром, нагруженным активной нагрузкой. Таким образом, размеры сферы трансформатора определяет его емкость С и соответственно диктует не только ширину полосы пропускания, но и сопротивление излучения, которое в идеале должно равняться сопротивлению среды. Здесь нужно понимать, что чрезмерное увеличение полосы пропускания за счет увеличения объема излучателей приведет к снижению добротности и соответственно приведет к уменьшению эффективности резонансного трансформатора в целом.

Рассмотрим емкостной элемент трансформатора Тесла, как двухполюсный элемент связи со средой:

Вполне справедливо называть емкостной трансформатор Тесла, диполем Тесла, ведь «диполь» означает di(s) дважды + polos полюс, что исключительно применимо к двухполюсным конструкциям, каковым и является резонансный трансформатор Николы Тесла с емкостной двухполюсной нагрузкой (сфера+земля).

В рассматриваемом диполе, емкость излучателя является единственным элементом связи со средой. Излучатель антенны, это два электрода внедренные в среду, см. Рис. 4. и при появлении на них потенциала напряжения, оно автоматически прикладывается к среде, вызывая в ней некий потенциал –Q и +Q. Если это напряжение переменно, то и потенциалы меняют свой знак на противоположный с той же частотой, а в среде появляется ток смещения. Так как прикладываемые напряжение и ток синфазны по определению последовательного колебательного контура, то и электромагнитное поле в среде претерпевает те же изменения.

Вспомним, что в диполе Герца, где напряжение сначала прикладывается к длинному проводнику, то для волны в ближней зоне характерно, что Е=1, а Н?1. Это связано с тем, что в этом проводнике существуют реактивные LC элементы, которые вызывают задержку фазы поля Н, т.к. полотно антенны соизмеримо с?.

В диполе Тесла, где ХL = −Хс (реактивной составляющей нет), излучающий элемент длиной до 0,05 ? не резонансен и представляет лишь емкостную нагрузку. При толстом и коротком излучателе, его индуктивность практически отсутствует, она компенсируется сосредоточенной индуктивностью. Здесь напряжение прикладывается сразу к среде, где одновременно возникают поле Е и поле Н. Для волны диполя Тесла характерно, что Е=Н=1, т.е. волна в среде сформирована изначально. Здесь мы отождествляем напряжение в контуре с электрической составляющей поля Е (единица измерения В/м), а ток смещения с магнитной составляющей поля Н (единица измерения А/м), только диполь Тесла излучает синфазное поле Е и поле Н.

Попробуем еще раз рассмотреть данное утверждение немного в другой плоскости:

Допустим, мы имеем напряжение, приложенное к пластинам (реактивной составляющей нет, она скомпенсирована), которые нагружены на активное сопротивление среды Rср, как на участок электрической цепи (Рис. 4).

Вопрос: Имеется ли ток в среде (в цепи) именно в этот момент времени?

Ответ: Да, чем больше приложено напряжение к активному сопротивлению среды, тем больше ток смещения в этот же период времени, и это не противоречит закону Дж. К. Максвелла и если хотите закону Ома для участка цепи. По этому синфазное изменение величины напряжения и тока в последовательном контуре в режиме последовательного резонанса, вполне справедливо порождают синфазность полей Е и Н в среде, см. Рис. 4б.

Подводя итог, мы можем сказать, что емкостной излучатель создает вокруг себя мощное и концентрированное электромагнитное излучение. Диполь Тесла обладает особенностью накопления энергии, что характерно только последовательному LC-контуру, где суммарное выходное напряжение значительно превосходит входное, что наглядно видно по результатам таблицы. Данное свойство давно практикуют в промышленных радиоустройствах для повышения напряжения в устройствах с большим входным сопротивлением.

Таким образом, мы можем сделать следующий вывод:

Диполь Тесла — это высокодобротный последовательный колебательный контур, где сфера является открытым элементом, осуществляющим связь со средой. Индуктивность L является лишь закрытым элементом и резонансным трансформатором напряжения, не участвующим в излучении.

Внимательно изучив цели построения резонансного трансформатора Николы Тесла, невольно приходишь к выводу, что он был предназначен для передачи энергии на расстояние, но эксперимент был прерван, а потомкам остается догадываться о истинной цели этого чуда конца 19 и начала 20 века. Не случайно Никола Тесла в своих записях оставил следующее изречение: «Пусть будущее рассудит и оценит каждого по его трудам и достижениям. Настоящее принадлежит им, будущее, ради которого я работаю, принадлежит мне».

Краткая справка: Электромагнитная волна была открыта Максвеллом в 60-х годах 18 века при помощи емкостного излучателя. На рубеже 20-го века Н. Тесла доказал возможность передачи энергии на расстоянии при помощи емкостных излучателей резонансного трансформатора.

Г. Герц, продолжая опыты с электромагнитным полем и опираясь на теорию Максвелла в 1888 году доказал, что электромагнитное поле излучаемое емкостным излучателем равно полю излучаемое электрическим вибратором.

В настоящее время диполь Герца и магнитная рамка К. Брауна, открытая в 1916 году, широко используются на практике, а емкостной излучатель незаслуженно забыт. Уважая заслуги Максвелла и Тесла, автор данной статьи в память о них провел лабораторные эксперименты с емкостной антенной и принял решение обнародовать их. Эксперименты были проведены на частоте 7 МГц в домашних условиях и показали не плохие результаты.

ИТАК! Многочисленные эксперименты показали, что резонансные элементы любого контура можно изменять в разных пределах, и как с ними поступишь, так они и поведут себя. Интересно то, что если уменьшать излучающую емкость открытого контура, то для получения резонанса приходится увеличивать индуктивность. При этом на краях излучателя и других неровностях появляются стримеры (от англ. Streamer). Streamer — это тускло видимая ионизация воздуха (свечение ионов), создаваемая полем диполя. Это и есть резонансный трансформатор Тесла, каким мы его привыкли видеть на просторах Интернета.

Можно увеличить емкость и в режиме резонанса напряжений добиться максимальной отдачи сбалансированного электромагнитного поля и использовать изобретение Тесла, как диполь для передачи энергии на расстояния, т.е. как емкостную антенну. И все же, Тесла был прав, когда отказался от металлического сердечника внутри повышающей катушки, ведь он вносил потери в том месте, где зарождалась электромагнитная волна. Тем не менее, результаты экспериментов привели к единственно правильному условию, когда LC-параметры стали соответствовать табличным данным (табл. 1).

Проверка принципа действия диполя Тесла на практике

Для проведения экспериментов с трансформатором Тесла над конструкцией не пришлось долго думать, здесь помог радиолюбительский опыт. В качестве излучателей вместо сферы и земли были взяты две гофрированные алюминиевые (вентиляционные) трубы диаметром 120 мм и длиной по 250 мм. Удобство применения заключалось в том, что их можно растягивать или сжимать как витки катушки, тем самым, меняя емкость контура в целом и соответственно соотношение L/С. «Трубы–емкости» располагались горизонтально на бамбуковой палке с расстоянием 100 мм. Катушка индуктивности L2 (30 мкГн) проводом 2 мм, была вынесена ниже оси цилиндров на 50 см. с тем, чтобы не создавать вихревых токов в сфере излучателей. Еще лучше будет, если катушку вынести за один из излучателей, располагая ее на одной оси с ними, где эл. магнитное поле минимально и имеет форму «пустой воронки». Образованный, этими элементами колебательный контур был настроен в режиме последовательного резонанса, где было соблюдено основное правило, где ХL = -Хс. Катушка связи L1 (1 виток, 2 мм), обеспечивала связь с трансивером мощностью 40 Вт. При ее помощи было настроено согласование импровизированного диполя Тесла с фидером 50 Ом, что обеспечило режим бегущей волны и полную отдачу мощности без отражения обратно в генератор. Данный режим в трансформаторе Тесла обеспечивает разрядник. Фидер длиной 5 метров для чистоты эксперимента был обеспечен с обоих сторон ферритовыми фильтрами.

Для сравнения испытывалось три антенны:

  • диполь Тесла (L= 0.7м, КСВ=1,1),
  • разрезной укороченный диполь Герца (L = 2×0,7м, удлинительная катушка, фидер 5 метров защищенный ферритовыми фильтрами КСВ=1,0),
  • горизонтальный полуволновой диполь Герца (L = 19,3м, фидер защищен ферритовыми фильтрами КСВ=1,05).

На расстоянии 3 км. в черте города был включен передатчик с постоянной несущей сигнала.

Диполь Тесла (7 МГц) и укороченный диполь с удлиняющей катушкой, по очереди размещались возле кирпичного здания на расстоянии всего 2 метра, и на момент эксперимента находились в равных условиях на высоте (10-11 м).

В режиме приема диполь Тесла превосходил укороченный диполь Герца на 2-3 балла (12-20 дБ) по шкале S-метра трансивера и более.

Затем вывешивался заранее настроенный полуволновый диполь Герца. Высота подвеса 10-11 м. на расстоянии от стен в 15-20 м.

По усилению диполь Тесла уступал полуволновому диполю Герца примерно на 1 балл (6-8 дБ). Диаграммы направленности всех антенн совпадали. Стоит отметить, что полуволновый диполь был размещен не в идеальных условиях, а практика построения диполя Тесла требует новых навыков. Все антенны находились внутри двора (четыре здания) как в экранированном котле.

Общие выводы

Рассматриваемый диполь Тесла на практике работает почти как полноценный полуволновый диполь Герца, что подтверждает равенство электромагнитных полей от электрического и емкостного диполя. Он подчиняется принципам двойственности, что не идет в разрез с теорией антенн. Несмотря на свои малые размеры (0,015-0,025 ?), диполь Тесла осуществляет связь с пространством с помощью емкостных излучателей. Он создают в пространстве вокруг излучателя синфазное поле Е и поле Н, из чего следует, что поле диполя Тесла в пределах излучателей уже сформировано и имеет «мини-сферу», что приводит к ряду новых выводов о свойствах этого диполя. Таким образом, диполь Тесла имеет все основания для практических экспериментов в радиолюбительской службе в диапазонах коротких, средних и особенно длинных волн. Думаю, что любителям длинноволновой связи (137 кГц) стоит обратить на этот эксперимент особое внимание, где КПД рассматриваемого диполя в десятки раз выше экспериментальных антенн на основе укороченного диполя Герца или резонансных рамок.

Вспомним, где на практике применяется диполь Тесла? К сожалению, для гражданского контингента до некоторого времени он был закрыт. Молчание нарушил американский радиолюбитель Т. Хард, который в среде радиолюбителей представил миру радиолюбителей небезызвестную ЕН–антенну.

Справка

Такой тип антенн (см. Рис. 5) с середины 40-х годов с успехом практиковался в войсковой мобильной КВ радиосвязи многих стран, в том числе и СССР. Рабочий диапазон частот — 1,5-12 МГц. Непосредственным участником разработки этой антенны в армии США был Т. Хард. Он дал новую жизнь изобретению Н. Тесла, которую в среде DX-менов категорично отвергают. Их понять можно, ведь этот диполь нетрадиционен и похож на недоработанную модель автомобиля, а DX-менам нужно участвовать в «гонках» без риска. Не стоит скрывать, что есть и другие причины, — Т. Хард представил принцип действия ЕН-антенны в рамках нетрадиционной теории. Вместе с тем, большинству радиолюбителей-экспериментаторов данный тип антенн очень интересен, и его относят к числу экспериментальных и даже мобильных антенн. Что касается схожести запатентованных конструкций Н. Тесла и Т. Харда, то это вызывает лишь улыбку. Что ж, диполь Герца тоже имел своих последователей, это длинный ряд вибраторных антенн, таких как диполь Надененко, антенна Бевереджа, Уда-Яги и пр. Таким образом, каждый из нас вправе внести свою лепту в развитие емкостных антенн и оставить потомкам свое имя в антенной технике.

Современная ЕН-антенна Т. Харда и ее схожесть с диполем Тесла

Так что же представляет из себя ЕН-антенна Т. Харда? Это по сути та же антенна емкостного типа, один в один схожая с диполем Тесла, см. рис. 5а и 5б., разница заключается лишь в месте размещения катушки L2, и это справедливая заслуга Теда, ведь в точке создания электромагнитного поля среда должна быть свободна от вихревых полей создаваемых катушкой индуктивности.

Здесь вместо земли и сферы используется два цилиндра, которые и создают открытую емкость излучающего конденсатора.

Проводя равенство между диполем Тесла и ЕН-антенной Т. Харда, можно придти к следующему определению: ЕН-антенна — это высокодобротный последовательный колебательный контур, где емкость С является открытым элементом, который осуществляет связь со средой. Индуктивность L является закрытым резонансным элементом, он работает как компенсатор малой реактивной составляющей емкостного излучателя.

С этими антеннами можно ближе познакомиться на: http://ehant.narod.ru/book.htm .

Итак, мы пришли к выводу, что диполь Н. Тесла и ЕН-антенна Т. Харда — это совершенно одинаковые антенны, их отличают лишь конструктивные различия. Из теории последовательного колебательного контура мы видим, что в данной антенне должно соблюдаться условие последовательного резонанса. К сожалению, на практике трудно выполнить условия точного фазирования, хотя и возможно. Т. Хард об этом умолчал, но предусмотрел это и предложил несколько вариантов для фазировки антенны так называемой «входной катушкой». По сути это реактивный L–элемент, хотя в некоторых конструкциях используют и фазирующие LC–элементы на основе трансформатора Бушеро-Шери.

Краткое рассмотрение энергетики в пользу диполя Тесла

По утверждению приверженцев ЕН-антенн, синфазность излучения полей Е и Н имеет место и играет немалую роль в помехозащищенности.

Это справедливо, т.к. вектора Е и Н в силу своей синфазности складываются, а отношение сигнал к шуму возрастает в 1,4 раза или на 3 Дб уже в ближней зоне антенны, что не так уж и маловажно.

Если в некоторый момент времени зарядить конденсатор C до напряжения V 0 , то энергия, сосредоточенная в электрическом поле конденсатора, равна:

где:
С — ёмкость конденсатора.
Vo — максимальное значение напряжения.

Из приведенной формулы ясно, что напряжение среды Ес в данной антенне прямо пропорционально емкости открытого конденсатора умноженное на квадрат приложенного напряжения... И это напряжение вокруг излучателя антенны может составлять десятки и сотни киловольт, что немаловажно для рассматриваемого излучателя.

Рассматриваемый тип антенны является высокодобротным колебательным контуром, а добротность колебательных контуров значительно больше единицы, то напряжение, как на катушке индуктивности, так и на обкладках конденсатора превышают напряжение приложенное к цепи в Q раз. Не случайно явление резонанса напряжений используется в технике для усиления колебания напряжения, какой либо частоты.

Из теории антенн мы знаем, что для создания необходимого поля, нужны объем и добротность. Уменьшив размеры диполя Герца (Рис. 6а) до размеров рассматриваемых излучателей антенны, к примеру, в 10 раз, во столько же раз уменьшилось расстояние между обкладками конденсатора СС, и соответственно действующая высота h д. Объем ближнего поля Vo уменьшился в 1000 раз (рис. 6б).

Теперь придется включить «компенсирующую» катушку L с добротностью значительно более 1000 и настроить антенну в резонанс. Тогда из-за большой добротности напряжение на цилиндрах СС возрастет в 100 раз, а собственное поле Vo антенны между цилиндрами — в Q, т. е. в 1000 раз!

Таким образом мы имеем теоретическую вероятность того, что поле диполя Тесла равно полю диполя Герца. Что соответствует утверждению самого Г. Герца.

Тем не менее, все выглядит хорошо только в теории. Дело в том, что на практике высокой добротности катушки Q?1000 можно добиться только специальными мерами, да и то только в режиме приема. Следует также обратить особое внимание на повышенную концентрацию электромагнитной энергии в диполе Тесла (ЕН–антенне), которая расходуется на нагрев ближнего пространства и вызывает соответствующее падение КПД антенны в целом. Именно по этим причинам одиночный диполь Тесла при равных условиях подвеса имеет меньшее усиление, чем диполь Герца, хотя имеются и другие утверждения. Если диполь изготовить с немецкой педантичностью и американской уверенностью, может так оно и получится.

В связи с вышесказанным хочется отметить, что антенна Т. Харда — это не вымысел, это достаточно высоко отработанная модель, но которую еще можно и нужно усовершенствовать. Здесь, как говорится, «КОНЬ НЕ ВАЛЯЛСЯ». Пусть Тед не смог донести до нас истинной теории работы его индивидуальной разработки. В конце концов, это всего лишь Т. Хард с усовершенствованной конструкцией диполя Н. Тесла. Да это и не важно! Важно то, что есть возможности идти дальше по этому пути. Пусть следующая разработка антенны будет от Иванова, Сидорова или Петрова!

В тексте были использованы материалы экспериментов. К. Максвелла, работы Н. Тесла, интересные статьи профессора В. Т. Полякова, издания таких известных авторов, как Г. З. Айзенберг, К. Ротхаммель, З. Беньковский, Э. Липинский, материалы Интернет и разработки Т. Харда.

73! UA9LBG & Радио-Вектор-Тюмень
E-mail: [email protected] & [email protected]

Генератор Тесла - это прекрасная альтернатива солнечным панелям. Основным его достоинством считаются простота сборки, небольшие затраты на изготовление и минимальное количество материалов. Понятно, что эта разновидность генератора будет производить меньше электричества, нежели солнечная панель, однако можно сделать сразу несколько и получить неплохое дополнение в виде бесплатной энергии.

Происхождение генератора Тесла

Знаменитый ученый Никола Тесла полагал, что наш мир полностью состоит из разных форм энергии, для получения и эксплуатации которой нужно собрать улавливающий прибор. Он успел разработать множество конструкций генераторов бестопливного типа. Один из его проектов можно реализовать своими руками в домашних условиях .

Принцип функционирования бестопливного генератора Тесла состоит в том, что он применяет энергию солнца как источник положительно заряженных электронов, а энергию земли как источник электронов с отрицательным потенциалом. В результате образуется разница потенциалов, с помощью которой и создается электроток.

Система состоит из пары электродов, один из которых улавливает энергетические источники, а второй применяется в качестве заземления. Роль накопителя в конструкции играет емкостный конденсатор или линий-ионный аккумулятор (более современные вариант).

Как уже было сказано, генератор Тесла требует минимум материалов. Для его создания нужно взять следующее:

  • провода;
  • фанерные или картонные листы;
  • фольга;
  • резистор;
  • емкостный конденсатор.

Процесс сборки генератора Тесла своими руками не очень сложный. Он состоит из нескольких этапов.

Устройство заземления

Для начала необходимо позаботиться о надежном и правильном заземлении. Если самодельное

оборудование будет эксплуатироваться в деревне или на даче, то для создания хорошего заземления нужно просто вбить поглубже металлический штырь в землю. Также можно подключить установку к конструкциям, которые уходят в почву на достаточную глубину.

Если генератор будет применяться в городской квартире, то тут для заземления можно воспользоваться газовыми или водопроводными трубами. Кроме того, можно подключиться и к электрическим розеткам, которые, в свою очередь, обладают заземлением.

Изготовление приемника электронов

Затем нужно сделать прибор, улавливающий положительные частицы, которые вырабатываются источником света. Подобным источником может выступать не только солнце, но и осветительное оборудование. Генератор Тесла может вырабатывать электричество даже от дневного света, причем и в пасмурную погоду.

Приемник включает в свою конструкцию кусок фольги, зафиксированный на листе картона или фанеры. Когда световые частицы будут попадать на фольгу, в ее структуре начнут формироваться токи. Объем получаемой энергии зависит от площади фольги. Для увеличения показателей мощности установки можно собрать сразу несколько приемников и обеспечить их параллельное соединение.

Подсоединение схемы устройства

На следующей стадии необходимо подключить контакты друг к другу. Это делать нужно через емкостный конденсатор. Если рассматривать электроконденсатор, то у него на корпусе есть обозначения полярностей. К «минусовому» контакту следует подсоединить заземление, а к «плюсовому» зафиксировать провод от фольги. После этого начнется зарядка конденсатора, с которого потом уже можно будет выделять электричество. В том случае, если мощность конденсатора окажется слишком высокой, то он может взорваться от чрезмерного количества энергии. Для того чтобы предотвратить проблемы, электроцепь дополняют специальным ограничительным резистором.

Если говорить о классическом конденсаторе из керамики, то в этом случае полярность не имеет никакого значения.

Кроме того, можно попытаться устроить систему не с помощью конденсатора, а с помощью литиевой батарейки. Тогда у вас будет возможность аккумулировать гораздо большее количество энергии.

На этом сборка генератора завершается. Для проверки напряжения в конденсаторе можно воспользоваться мультиметром. В том случае, если оно достаточное, можно попытаться подсоединить к установке небольшой светодиод. Такую генераторную установку можно применять для самых разных проектов, например, для изготовления устройств ночного освещения на основе светодиодов, которое не будет нуждаться в питании.

По сути, вместо фольги также можно воспользоваться и иными материалами:

  • алюминиевыми листами;
  • медными листами.

Если крыша вашего дома сделана из алюминия, то можно попытаться включить ее в схему генератора и посмотреть, какое количество энергии она может выработать.

В условиях постоянного роста потребляемой энергии широкий интерес вызывает возможность добычи электричества нетрадиционными способами. Среди них с давних пор известен генератор Тесла, способный вырабатывать энергию без использования какого-либо топлива. Данный метод теоретически открывает возможности для полной независимости от энергоснабжения, однако, как показывает практика, до этого еще очень далеко.

Альтернативный источник электроэнергии

Данное изобретение можно смело отнести к альтернативным источникам электроэнергии. Благодаря своим возможностям, генератор Тесла является возможной заменой солнечным батареям. Он отличается простой конструкцией, которая легко собирается и минимальным количеством используемых материалов. Соответственно, и финансовые затраты тоже незначительные. Отдельно взятое устройство конечно не сравнится с аналогичной солнечной панелью, но если соединить в одно целое сразу несколько единиц, то может вполне получиться приемлемый результат.

Многие ученые до сих пор ведут споры об использовании действия свободной энергии при создании такого устройства. Однако, большинство современных технических достижений в самом начале их открытия, тоже считались недосягаемыми для практической реализации. До настоящего времени остались неисследованными многие сферы, связанные с энергией и физическими полями. Хорошо изучены лишь те виды, которые поддаются исследованиям, измерениям и прочим ощущениям. Тем не менее, существуют явления, не поддающиеся каким-либо замерам, поскольку отсутствуют даже приборы для этих целей.

В категорию неисследованного попал и трансформатор Тесла, поскольку принципы его работы расходятся с общепринятыми теориями, связанными с производством электроэнергии. Многим ученым он кажется своеобразным , не требующим энергии для своей работы, да еще и способным производить другие виды энергии - электрическую или тепловую. Эти утверждения связаны с использованием генератором свободной энергии, происхождение которой до сих пор никак теоретически не обосновано. То есть, на основе известных законов, понятий и определений делается вывод, что такая конструкция на практике не будет работать, поскольку она идет вразрез с законом сохранения энергии и не соблюдает его принцип.

Пока ученые спорят, некоторые домашние умельцы создают вполне работоспособные модели, подтверждающие на практике теоретические предположения. Для более глубокого понимания процессов, следует внимательно изучить конструкцию и принцип действия этих устройств.

Технические возможности генератора

Способы получения электричества, предложенные изобретателем , значительно обогнали свое время. Даже сейчас эта тема широко не обсуждается, а если и рассматривается, то лишь в теоретической плоскости, без возможности практического использования.

Среди них особое место занимает бестопливный генератор Тесла, получивший в названии имя самого изобретателя, оформившего патент на устройство. Изначально существовало несколько вариантов его использования, но затем его основной функцией стало получение электрической энергии высокого напряжения и высокой частоты. Следует отметить, что в ходе экспериментов выходное напряжение нередко доходило до нескольких миллионов вольт. В результате, в воздушном пространстве возникали электрические разряды большой мощности, длина которых могла доходить до нескольких десятков метров.

Практическое применение в начале прошлого века генератор получил в области медицины. Больные подвергались обработке потоками высокочастотной энергии, обладающими тонизирующим и лечебным действием. Проводились и эксперименты по переработке отходов мусорных свалок в электричество, создавая принцип работы устройства. Газ, выделяемый при сжигании мусора, служит универсальным источником тока для генератора, обладающего высоким КПД. Для того чтобы понять, как такое возможно, нужно знать устройство и принцип действия прибора.

Принцип работы генератора Тесла

Представленное генераторное устройство работает под влиянием внешних процессов или окружающей среды. Источниками энергии становятся вода, ветер, различные вибрации, создающие колебания и другие факторы. В этом состоит его главный принцип работы.

Простейший магнитный генератор состоит из с двумя обмотками. Работа вторичного элемента осуществляется под действием вибрации, в результате, так называемые эфирные вихри взаимодействуют с его поперечным сечением. Это приводит к образованию напряжения во всей системе и к дальнейшей ионизации воздуха. Данные процессы возникают на самом конце обмотки, образуя электрические разряды.

В конструкции прибора используется трансформаторный металл, усиливающий индуктивные связи. Между элементами обмотки возникают колебания, а разряды образуются в виде плотных сплетений.

Другая схема генератора использует мощность, вырабатываемую самим оборудованием. Для того чтобы запустить генератор необходим внешний толчок в виде импульса, создаваемого аккумулятором. Прибор состоит из двух металлических пластин, одна из которых монтируется наверху, а другая устанавливается в землю. Между ними в цепь включается конденсатор.

Подача постоянного разряда производится к металлической пластине, после чего начинают выделяться определенные частицы с положительным потенциалом. На поверхности Земли образуются отрицательные частицы. В результате образуется разность потенциалов и ток начинает поступать в конденсатор.

Следует учитывать специфику подключения, которой отличается генератор свободной энергии Тесла. Для работы первичной катушки требуется высоковольтное напряжение высокой частоты. Данный ток обеспечивает неоднократная искровая разрядка конденсаторного элемента. Каждая искра образуется в таком промежутке, когда напряжение достигает определенного уровня между терминалами конденсаторов.

Для того чтобы искровой промежуток располагался в проводящем положении, требуется последовательная связь конденсатора и первичной катушки. Это приводит к созданию цепи RLC, которая, в свою очередь, приводит к электрическим колебаниям с определенной частотой. Одновременно на вторичной катушке образуется собственная цепь RLC. В этом месте электрические колебания возбуждаются под влиянием индукции напряжения. В каждой цепи колебания происходят с индивидуальной частотой, в зависимости от конкретных параметров конструкции.

Для обеспечения нормальной работы генератора, обе цепи должны войти в резонанс между собой, то есть их частоты колебаний совпадают. После этого во вторичной катушке происходит многократное увеличение амплитуды, что приводит к созданию высокого выходного напряжения.

Параметры и характеристики

В работе электрогенератора Тесла используется принцип трансформатора с отсутствующим сердечником. Конструкция состоит из первичной катушки с витками проводов большого диаметра, и вторичной катушки с витками из более тонких проводов. В приборе без магнита отсутствует традиционный ферромагнитный сердечник, что и отличает его от обычного трансформатора. Благодаря такой конструкции, уровень взаимной индуктивности катушек значительно снижается. Большое количество витков на вторичной катушке, способствует образованию высокого напряжения при минимуме энергетических затрат.

Данная теория нашла наглядное практическое подтверждение. Домашние умельцы, используя генератор свободной энергии мощностью 40 Вт, получают напряжение до 500 киловольт. Это приводит к образованию длинных красивых разрядов, достигающих двух или трехметровой величины. Попадая в атмосферу, высоковольтный разряд становится похож на своеобразную корону. С обычным трансформатором невозможно достичь такой продуктивной работы и наглядных результатов.

Помимо воздушных эффектов, происходит образование длинных мобильных зарядов при контакте с заземленными предметами. Следует отметить, что все разряды обладают определенными частотами, а другие частоты кратны первоначальному значению.

Каждый такой высоковольтный заряд состоит из определенного набора частот, способных разбивать молекулы газов, независимо от устойчивости любой из них. Процесс расщепления сопровождается появлением темно-синего цвета зеленоватого оттенка.

Таким образом, если на электрическую корону подать струю газа, то под влиянием резонансных сил произойдет распад молекул на отдельные атомы. Внешние электроны атомных частиц сосредоточатся на вторичной обмотке и перейдут в корону в виде ионов. На игольчатых выходах вторичной обмотки образуется очень высокое напряжение. В этом же месте устанавливается диодный выпрямитель, с положительным потенциалом, направленным в сторону острия. За счет этого возможно получить максимальный положительный результат, поскольку действие переменной токовой полуволны позволяет разбивать молекулы с одной и той же частотой.

Под действием постоянной токовой составляющей атомы без электронов будут разгоняться в направлении от иглы. В результате, в пространство выходят положительные атомы водорода, которые и образуют светящуюся корону.

Как сделать генератор Тесла своими руками: порядок действий

Первым этапом при изготовление генератора, будет устройство заземления. Если устройство будет использоваться на даче или в загородном доме, можно ограничиться единственным металлическим штырем, забитым глубоко в землю. Разрешается использовать готовые металлические конструкции, расположенные в земле. При использовании генератора в квартире, заземлением становятся DUG трубы или розетки с подключенным заземляющим контактом.

На втором этапе нужно создать элемент для приема свободных положительно заряженных частиц, вырабатываемых солнцем или любыми приборами искусственного освещения. В случае правильной сборки, прием возможен даже при пасмурной погоде. Кусок фольги закрепляется на фанерном или картонном листе. При попадании световых частиц на алюминий, в нем возникает электрический ток. Количество энергии напрямую зависит от площади фольги. Мощность генератора Тесла можно существенно повысить путем изготовления нескольких приемников и их параллельного соединения между собой.

После окончания сборки генератора тесла, схема должна быть подключена. Для этого контакты через конденсатор соединяются между собой. Полярность обозначена на корпусе конденсатора. Отрицательный контакт соединяется с заземлением, а положительный - прикрепляется проводом к фольге. Сразу же начнется зарядка конденсатора, после чего из него можно получать электроэнергию. Чтобы конденсатор не взорвался от избыточной энергии, в цепь устанавливается резистор, выполняющий ограничительную функцию.

Свободная энергия - процесс выделения большого количества этого элемента. Причем в данном случае человечество не участвует в подобной выработке. Сила ветра способствует вращению электрогенераторов. Чем больше перепад давления, тем выше атмосферное условие. Что касается человечества, то этот фактор считается дарованным свыше. Поэтому как таковой схемы генератора свободной энергии нет, подобные теории выдвигают современные экспериментаторы.

Однако в силу научных исследований ученые указывают на обратные сведения. Великие электротехники Тесла, Фарадей и Вольт заставили человечество по-другому взглянуть на физику и электрификацию, сегодня потребление энергетических ресурсов возросло. Большинство специалистов пытаются получить источники из внешней среды. Подобные действия легко осуществимы, с учетом того что Никола Тесла уже делал подобные эксперименты с помощью генераторов.

Практические схемы генераторов свободной энергии

Получение минимальных мощностей происходит несколькими способами:

  • через магниты;
  • с помощью тепла воды;
  • из ферримагнитных сплавов;
  • из атмосферного конденсата.

Однако чтобы получить электричество в огромном количестве, необходимо научиться управлять этой энергией. Благодаря практической схеме генераторов свободной энергии, свет должен доходить до каждого человека, вне зависимости от локального расположения. Это подтверждают исторические факты. Для такого эксперимента требуется огромная мощность излучения, которой в те времена быть не могло.

Да и сегодня существующие станции не способны дать такой заряд. Для создания схемы генератора свободной энергии требуется наличие определенных средств и элементов. Итак, чтобы получить необходимое количество заряженной мощности, потребуется катушка, которую в то время использовал Тесла. Электроэнергию получают в том количестве, которое понадобится.

Генератор свободной энергии: схема и описание

Сущность заключается в том, что человечество окружают воздух, вода, вибрации. Так вот, в катушке присутствуют две обмотки: первичная и вторичная, попадающая под вибрации, которую в процессе эфирные вихри пересекают в направлении поперечного сечения. Результат наводит напряжение, по сути, происходит воздушная ионизация. Она возникает на острие обмотки, выдавая разряды.

Осциллограмма колебаний тока сопоставляет кривые. Индуктивная связь сильна благодаря трансформаторному железу, ввиду этого возникает плотное сплетение и колебания между обмотками. При извлечении ситуация изменится. Импульс затухнет, зато мощность расширится, пройдя нулевую точку, и оборвется, когда дойдет до максимального напряжения, хотя связь слабая, а ток в первичной обмотке отсутствует. Тесла утверждал, что такие колебания продолжаются благодаря эфиру. Существующая среда предназначена для получения электричества. На практике рабочая схема генератора свободной энергии состоит из катушки, обмоток. Причем выглядит простейший способ получения тока следующим образом (фото внизу):

Особенности развития генератора

Практические опыты Теслы показывают, что получить электричество можно с помощью генератора, двух катушек и одной дополнительной без первичного мотка, две обмотки. Если двигать работающую и пустую катушку рядом на расстоянии полуметра, а затем просто отодвинуть, то корона затухнет. При этом ток, который запитан, не изменит значение от положения в пространстве той, что не заряжается от сети. Объяснение возникновения и поддержания подобной энергии в пустой вторичной обмотке легко объяснимо.

Когда развивалась электротехника, станции строились на переменном токе. Эти постройки были маломощными, покрывали одну сеть предприятий, которые были оснащены разным оборудованием. Несмотря на это, возникали такие ситуации, при которых генераторы работали вхолостую из-за перепадов напряжения. Пар заставлял турбины вращаться, двигатели работали быстрее, нагрузка на ток уменьшалась, в результате автоматика перекрывала подачу давления. В итоге нагрузка пропадала, предприятия переставали функционировать из-за раскачки тока, и их приходилось отключать. В процессе развития ситуацию стабилизировали подключением параллельной сети.

Дальнейшее развитие электричества

Спустя определенное время энергосистемы стали совершенствовать, и частично подобные сбои напряжения уменьшались. Однако сформировалась четкая и принципиальная теория. В результате перепады тока и подобная дополнительная энергия получили название - реактивная мощность. Подобные скачки возникали из радиотехники ЭДС самоиндукции. По сути, катушки и конденсаторы работали наравне со станцией, а также против нее. Кроме того, полагалось, что ток имеет направление к раскачиванию, и провода нагреваются самостоятельно.

Также определили, что подобные неудачи возникают из-за резонанса. Но как катушка и конденсат индукции способны увеличить мощность энергетической системы сотни предприятий - об этом задумывались многие академики. Некоторые нашли ответы в практической основе схемы генератора свободной энергии Тесла, а большинство отодвинули этот вопрос на дальний план. В результате не только инженеры не могли справиться с обязанностями и пытались бороться с реактивной мощностью, но в процессе к ним присоединились ученые, которые создавали разнообразное оборудование, чтобы ликвидировать

Характеристика генератора Тесла

Спустя десятилетие после получения патента на переменный ток, Тесла создал схему генератора свободной энергии с самозапиткой. Бестопливная модель потребляет мощность самой установки. Чтобы запустить ее, требуется единственный импульс из аккумулятора. Однако это изобретение до сих пор не используется в хозяйстве. Работа прибора напрямую зависит от конструкции, в которую вошли компоненты:

  1. Две специальные железные пластины, одна поднимается вверх, а другая устанавливается в земле.
  2. В конденсатор подключаются два провода, идущие от заземления и сверху.

Металлической пластине передается постоянный электрический заряд, ввиду того что источники выделяют лучистые частицы микроскопических размеров. Земля является резервуаром с отрицательными частицами, поэтому терминал прибора подводится к ней. Заряд высокий, поэтому в конденсатор постоянно поступает ток, и благодаря этому он питается.

Разработка бестопливного аппарата

Схема с самозапиткой генератора свободной энергии благодаря конструкции соответствует статусу бестопливного механизма, потому что использует космические излучения как источник энергии. Этот аппарат способен активироваться самостоятельно, при этом извлекая электричество из атмосферы земли. По мнению Тесла, связка проводов, направленных вверх, за пределы атмосферы, даст ток, который будет идти от земли, потому как в ней тепла больше, чем за ее пределами.

В процессе прохождения напряжения можно запитать электродвигатель, причем функционирующий до температурного снижения в земле. В результате Никола Тесла смог вывести схему бестопливного генератора свободной энергии. Причем эта установка производит электричество без дополнительных источников питания - задействуется только атмосфера. В процессе энергия эфира была использована в целях добычи заряда частиц. Спустя какое-то время ученый утверждал, что обычная машина не способна заниматься преобразованием.

Дальнейшие разработки механизма

В результате ученый стал разрабатывать турбину. В основу этого агрегата вошел водяной насос, который ускорялся благодаря плоским железным дискам. Подобная основа может входить в состав других не менее В итоге рабочего процесса схема бестопливного генератора свободной энергии была усовершенствована, электричество передавалось в требуемом количестве. Чтобы собрать аппарат, необходимо выполнить три этапа:

  • собрать вторичную обмотку, которая наполнена высоким содержанием вольтов;
  • установить первичные мотки с низким напряжением;
  • соорудить механизм управления.

Чтобы создать рабочую схему генератора свободной энергии, необходимо сделать основу, где будет собираться вторичная обмотка. Для этого потребуется предмет в форме цилиндра, медный провод, который будет на него намотан. Основной материал не должен пропускать электроэнергию, поэтому лучше использовать ПВХ трубу. Обмотка составляет 800 витков. Первичный провод толщиной должен превышать вторичный. В результате бестопливное устройство имеет такой вид.

Общие описания механизмов

Бестопливная схема генератора свободной энергии работает по принципу рециркуляции электричества обратно в катушку. Обычные устройства работают с помощью карбюратора, поршней, диодов и пр. То есть в этом аппарате двигатель не потребуется. Этот элемент заменен и преобразует энергию постоянно. Конструкция аппарата построена таким образом, чтобы мощность на выходе была меньшей.

Современные ученые Барбоса, Леаль соорудили уникальный генератор энергии, который имеет коэффициент полезного действия в 5000%. Сегодня эта конструкция, описание, характеристика работы и процесса не известны, ввиду того что устройство не запатентовано. Схема генератора свободной энергии Барбосы и Леаля создана таким образом, что работа дает небольшой виток мощности. Когда запускают аппарат, выходящая энергия превышает уровень подводимой. Небольшой прототип генерирует 12 кВт, используя при этом 21 Вт.

Самые известные способы генерации свободной мощности

Самыми популярными считаются работы Николы Тесла. Это был один из первых ученых, который занимался схемами генератора свободной энергии. Он занимался развитием беспроводной связи. В основе были плоские катушки с магнитным полем внутри. В результате трансформатор имеет асимметричную взаимоиндукцию. Если в выходную цепь подключить нагрузку, то это не повлияет на мощность, которая потребляется первичной обмоткой.

В процессе работы Тесла начал уделять внимание трансформатору, работающему на резонансе. Преобразовывал мощность в коэффициент полезного действия, который должен был быть более единицы. Для создания подобной схемы применял однопроводные конструкции. Именно Тесла создал термин "свободные вибрации", в исследованиях указывал на синусоидальные колебания в цепи электрики. Работы Тесла знамениты до сих пор. Последователей у свободной энергии много.

Последователи Тесла

Спустя время после знаменитого ученого за создание и разработку свободных генераторов принялись и другие исследователи и изобретатели. В прошлом столетии, в 20-30 годы, исследователем Брауном разрабатывалась безопорная тяга за счет сил электрики. Он достаточно четко и структурированно описывал процесс получения движущей мощности с помощью

После Брауна получили популярность изобретения Хаббарда. В его устройстве в катушке срабатывали импульсы, благодаря этому магнитное поле вращалось. Вырабатываемая мощность была настолько сильна, что вся система могла совершать полезную работу. Позже Нидершот создал генератор электричества, состоящий из радиоприемника и неиндуктивной катушки.

Немного позже с подобными элементами работал Купер. Схема генератора свободной энергии этого исследователя заключалась в использовании явления индукции без магнитного поля. Чтобы компенсировать последний элемент, использовались катушки, имеющие специфическую намотку спиралью или двумя проводами. Принцип аппарата заключался в создании мощности во вторичной цепочке, обходя при этом первичную обмотку. Кроме того, описание устройства указывало на безопорную движущую мощность в пространстве. С точки зрения Купера, гравитация - поляризация атомов. Также он утверждал, что катушки, которые будут сконструированы специфически, смогут производить поле, не станут экранировать и имеют целый ряд схожих параметров и характеристик с полем гравитации.

Современный взгляд на свободную энергию

С точки зрения физической науки, понятия свободной энергии не может быть. Этот вопрос скорее философский или религиозный. Однако, как показывает практика некоторых известных ученых, энергия системы имеет постоянство. При детальном рассмотрении видно, что мощность выделяется и возвращается обратно. Таким образом, приток энергии через гравитацию и время не видны сторонним наблюдателям. То есть, если создается процесс выше трех пространственных измерений, то возникает свободное перемещение.

Джоуль был заинтересован подобными изобретениями. Практичность этого устройства очевидна для потребителя. Для производства энергии существование работающих схем генератора свободной энергии может обернуться большими потерями, ввиду того что распределение происходит централизованно и под контролем.

Позднее концепции свободных генераторов и подобные теории выдвигали ученые Адамс, соорудивший мотор, Флойд - ученый, вычисливший состояние вещества в нестабильном виде. У этих ученых было много изобретений, конструкций и теорий. Многие успешные устройства могли бы работать на благо человечества.

Однако не все ученые и изобретатели преуспели в науке и подобных конструкциях. Многие начинающие исследователи проводят свои опыты, но немногие достигают успеха. Правда, недавно у одного пользователя сети интернет возникла мысль повторить изобретение Тесла. В результате у пользователя "Акула" схема генератора свободной энергии была воссоздана. К тому же она еще и правильно функционировала. Кроме того, многие инженеры утверждают, что можно создать с помощью кулера схему генератора свободной энергии. Это доказывает, что великие умы прошлого могли получить электричество даже без специфических приборов.

Можно изготовить генератор, который питается от дневного света. Это отличный аналог солнечной панель, но главное преимущество такого генератора - минимум материалов, дешевизна и простота сборки. Конечно, такой генератор будет вырабатывать гораздо меньше энергии, чем солнечная панель, но их можно сделать много и таким образом получить неплохой приток бесплатной энергии.

Никола Тесла считал, что весь мир представляет собой энергию, таким образом, для ее получения и использования достаточно лишь собрать устройство, которое бы могло эту бесплатную энергию улавливать. У него было множество различных проектов «бестопливных» генераторов. Один из них, который сегодня каждый может сделать своими руками, будет рассмотрен ниже.



Принцип работы устройства заключается в том, что оно использует энергию земли как источник отрицательных электронов, а энергию солнца (или любого другого источника света) как источник положительных электронов. В итоге появляется разница потенциалов, которая и образует электрический ток.
Всего система имеет два электрода, один заземляется, а другой размещается на поверхности и улавливает источники энергии (источники света). В качестве накопительного элемента выступает конденсатор большой емкости. Впрочем, в наши дни конденсатор можно заменить и литий-ионным аккумулятором, подключив его через диод, чтобы не возникало обратного эффекта.

Материалы и инструменты для изготовления генератора:
- фольга;
- лист картона или фанеры;
- провода;
- конденсатор большой емкости с высоким рабочим напряжением (160-400 В);
- резистор (наличие не обязательно).


Процесс изготовления:

Шаг первый. Делаем заземление
Сперва нужно сделать хорошее заземление. Если самоделка будет использоваться на даче или селе, то можно забить металлический штырь поглубже в землю, это будет заземлением. Можно также подключиться к уже имеющимся металлическим конструкциям, которые уходят в землю.

Если же пользоваться таким генератором в квартире, то здесь в качестве заземления можно использовать водопроводные и газовые трубы. Еще все современные розетки имеют заземление, к этому контакту также можно подключиться.


Шаг второй. Делаем приемник положительных электронов
Теперь нужно изготовить приемник, который бы мог улавливать те свободные, позитивно заряженные частицы, которые вырабатываются вместе с источником света. Таким источником может быть не только солнце, но и уже работающие лампы, различные светильники и тому подобное. По словам автора, генератор вырабатывает энергию даже при дневном свете в пасмурную погоду.

Приемник состоит из куска фольги, которая закреплена на листе фанеры или картона. Когда частицы света «бомбардируют» алюминиевый лист, в нем образуются токи. Чем больше будет площадь фольги, тем больше энергии будет вырабатывать генератор. Чтобы повысить мощность генератора, таких приемников можно соорудить несколько и затем все их параллельно соединить.


Шаг третий. Подключение схемы
На следующем этапе нужно соединить оба контакта между собой, это делается через конденсатор. Если взять электролитический конденсатор, то он является полярным и имеет обозначение на корпусе. К отрицательному контакту нужно подключить заземление, а к положительному провод, идущий к фольге. Сразу после этого конденсатор начнет заряжаться и с него затем можно снимать электроэнергию. Если генератор получится слишком мощным, то конденсатор может взорваться от переизбытка энергии, в связи с этим в цепь включают ограничительный резистор. Чем больше заряжен конденсатор, тем больше он будет сопротивляться дальнейшей зарядке.

Что же касается обычного керамического конденсатора, то их полярность значения не имеет.




Помимо всего прочего можно попробовать подключить такую систему не через конденсатор, а через литиевую батарейку, тогда можно будет на много больше аккумулировать энергии.


Вот и все, генератор готов. Можно взять мультиметр и проверить, какое напряжение уже есть в конденсаторе. Если оно достаточно высокое, можно попробовать подключить маленький светодиод. Такой генератор можно использовать для различных проектов, к примеру, для автономных ламп ночного освещения на светодиодах.

В принципе, вместо фольги можно использовать и другие материалы, к примеру, медные или алюминиевые листы. Если у кого-то в частном доме крыша сделана из алюминия (а таких много), то можно попробовать подключиться к ней и посмотреть, сколько будет вырабатываться энергии. Неплохо также будет проверить, сможет ли такой генератор вырабатывать энергию, если крыша будет металлической. К сожалению цифр, которые бы показывали силу тока в соотношении к площади приемного контакта, не было представлено.