Как определить основные параметры электродвигателя? Подбор электродвигателя по параметрам существующего Как определить мощность эл двиг

У всех электродвигателей на корпусе есть табличка, на которой указываются его электрические характеристики. Именно об основных параметрах электродвигателей мы расскажем в этой статье.

Параметры электродвигателя: таблица

Наименование параметра

Единица измерения

Примечание

Тип
Номинальная мощность Киловатт
Номинальный ток Ампер Для трехфазных электродвигателей зависит от типа соединения обмоток
Номинальное напряжение Вольт
Коэффициент мощности (КПД)
Коэффициент полезного действия (cos ϕ) %
Номинальная скорость вращения Обороты в минуту

Но иногда табличка отсутствует, либо прочесть ее невозможно. При эксплуатации двигатель неоднократно окрашивают, нередко – вместе с табличкой. Поэтому приходится определять его параметры методом измерений.

Параметры электродвигателя №1: мощность

В паспортных данных указывается номинальная активная мощность, потребляемая из сети при номинальной нагрузке на валу. Для производства измерений нужно нагрузить электродвигатель, испытывая его со штатной нагрузкой (в составе устройства, для привода которого он предназначен).

Для измерений можно использовать электросчетчик. Для этого нужно подключить электродвигатель в качестве единственной нагрузки на счетчик на время, засекаемое по секундомеру.

Для удобства расчетов двигатель подключается на время, равное 10 минутам. До подключения и через 10 минут со счетчика снимаются показания. Разность показаний в кВт∙ч, поделенная на 60/10=6, и будет равна мощности электродвигателя в киловаттах.

Некоторые электронные счетчики имеют функцию измерения мгновенной мощности, при этом задача упрощается. Нужно при работающем двигателе зайти в меню измерений счетчика и найти в нем искомое значение.

Параметры электродвигателя №2: потребляемый ток

Для измерения тока, потребляемого электродвигателем, используются токоизмерительные клещи , измеряющие ток в цепи без ее разрыва.

При использовании мультиметра () или амперметра нужно заранее убедиться в том, что ожидаемое значение измеряемого параметра лежит в диапазоне измерений. Прибор подключается последовательно с электродвигателем или с одной из обмоток трех фаз. И не стоит забывать о пусковом токе , перед запуском прибор нужно надежно закоротить , чтобы он не сгорел.

Можно воспользоваться и электронным счетчиком с функцией измерения токов.

Если потребляемая мощность уже известна, ток можно подсчитать. Для однофазного двигателя :

Для трехфазного :

Если измерения производятся без нагрузки, то получится ток холостого хода . Подсчитать номинальный ток не представляется возможным, так как ток холостого хода не нормируется и составляет 20-40% от номинального. В этом случае для подсчета токов холостого хода трехфазных асинхронных электродвигателей используются данные таблицы.

Мощность двигателя, кВт Ток холостого хода (в процентах от номинального)
При частоте вращения, об/мин
3000 1500 1000 750 600 500
0,12-0,55 60 75 85 90 95
0,75-1,5 50 70 75 80 85 90
1,5-5,5 45 65 70 75 80 85
5,5-11 40 60 65 70 75 80
15-22,5 30 55 60 65 70 75
22,5-55 20 50 55 60 65 70
55-110 20 40 45 50 55 60

Параметры электродвигателя №3: тип соединения обмоток

Это очень важный параметр трехфазного электродвигателя. Все шесть выводов начал и концов обмоток выведены в барно двигателя. Подключить их можно либо в звезду, либо в треугольник.

Рядом с символами «треугольник/звезда» на табличке указывается номинальное напряжение – «220/380 В» . Это означает, что при включении в сеть трехфазного тока напряжением 380 В обмотки двигателя нужно соединить в звезду. Ошибка в соединении приведет к выходу электродвигателя из строя.

Номинальный ток также указывается через дробь. В описанном случае необходимо значение, указанное в знаменателе.

Пусковой ток электродвигателя

В момент запуска вал электродвигателя неподвижен. Чтобы его раскрутить, нужно усилие, превышающее номинальное. Поэтому и ток при пуске превышает номинальный. При раскручивании вала ток плавно уменьшается.

Пусковые токи мешают работе электрооборудования, вызывая резкие провалы напряжения. При запуске мощных агрегатов могут даже отпадать пускатели других электродвигателей, гаснуть лампы ДРЛ.

Для снижения последствий запуска применяют три способа.

  1. Переключение в процессе разгона схемы электродвигателя со звезды на треугольник .
  2. Использование электронных устройств плавного пуска .
  3. Использование частотных преобразователей .

Таблица 4

Данный раздел расчётов необходимо завершить указанием выбранного электродвигателя. Например: «Выбран электродвигатель 4А 112М4 УЗ ГОСТ 19523-81 с мощностью Р дв = 5,5 кВт с синхронной частотой вращения вала электродвигателяn дв = 1500 об/мин.

2.2. Определение передаточного числа редуктора

После выбора электродвигателя определяют передаточное число редуктора

(2.6)

где n дв - частота вращения вала двигателя под нагрузкой (асинхронная);

n 1 =n дв / u о.п. частота вращения входного (быстроходного)вала редуктора;

n 2 =n вых частота вращения выходного (тихоходного) вала редуктора.

Передаточное число редуктора необходимо согласовать со стандартным значением, приведенным в табл.5; при этом отклонение Δu , согласно ГОСТ, не должно превышать 4% для цилиндрических передач и 2,5% для конических.

. (2.7)

Таблица 5

Стандартные передаточные числа u по ГОСТ 2185-66

Примечание . 1-ый ряд предпочтителен 2-му.

Если погрешность превышает стандартное значение, то следует принять двигатель той же мощности, но с другой частотой вращения, либо изменить передаточное число открытой передачи (в допустимых пределах) и повторить расчеты.

2.3. Определение мощности и вращающих моментов на валах

Частота вращения входного вала редуктора n 1 =n дв / u о.п.

Частота вращения выходного вала редуктора определяется с учетом принятого стандартного передаточного числаu ст

Мощности (кВт), передаваемые валами, определяются с учетом КПД составляющих звеньев кинематической цепи (см. рис.4):

Р 1 = Р дв ∙ η оп η п

Р 2 = Р 1 η зп η п ∙η м (2.8)

Вращающие моменты (Н∙м) на валах редуктора могут быть определены по следующим зависимостям:

для входного вала -
, (2.9)

для выходного вала -

(2.10)

где Т i – крутящий момент, передаваемый валом, Н. м;

[τ кр ]– допускаемые напряжения на кручение;[τ кр ]=15…20 МПа .

Полученные значения диаметров валов редуктора следует округлить до ближайшего большего значения из ряда нормальных линейных размеров по ГОСТ 6636-69 . Для удобства дальнейших расчётов найденные параметры редуктора сводятся в таблицу:

u ред

n i , об/мин

Р i , кВт

Т , Н∙м

d i , мм

Если техническая документация к двигателю утеряна, а надписи на корпусе стерлись или не читаемы, возникает вопрос: как определить мощность электродвигателя без бирки? Существуют несколько методов, о которых мы вам расскажем, и вам останется выбрать из них наиболее удобный в вашем случае.

Практические измерения

Самый доступный способ - проверка показаний бытового счетчика электроэнергии. Сначала следует отключить абсолютно все бытовые приборы и выключить свет во всех помещениях, поскольку даже горящая лампочка на 40Вт будет искажать показания. Проследите, чтобы счетчик не крутился или индикатор не мигал (в зависимости от его модели). Вам повезло, если у вас счетчик «Меркурий» - он показывает величину нагрузки в кВт, поэтому от вас потребуется только включить двигатель на 5 минут на полную мощность и проверить показания.

Индукционные счетчики ведут учет в кВт/ч. Запишите показания до включения мотора, дайте ему поработать ровно 10 минут (лучше воспользоваться секундомером). Снимите новые показания счетчика и путем вычитания узнайте разницу. Умножьте эту цифру на 6. Полученный результат отображает мощность двигателя в кВт.

Если двигатель маломощный, вычислить параметры будет несколько сложнее. Выясните, сколько оборотов (или импульсов) равно 1кВт/ч - информацию вы найдете на счетчике. Допустим, это 1600 оборотов (или вспышек индикатора). Если при работающем двигателе счетчик делает 20 оборотов в минуту, умножьте эту цифру на 60 (количество минут в часу). Получается 1200 оборотов в час. Разделите 1600 на 1200 (1.3) - это и есть мощность двигателя. Результат тем точнее, чем дольше вы измеряете показания, но небольшая погрешность все равно присутствует.

Определение по таблицам

Как узнать мощность электродвигателя по диаметру вала и другим показателям? В интернете нетрудно найти технические таблицы, с помощью которых можно узнать тип мотора и, соответственно, его мощность. Вам потребуется снять следующие параметры:

  • диаметр вала;
  • частота его вращения или число полюсов;
  • крепежные размеры;
  • диаметр фланца (если двигатель фланцевый);
  • высота до центра вала;
  • длина мотора (без выступающей части вала);
  • расстояние до оси.

Вычисление по количеству оборотов в минуту

Определите визуально количество обмоток статора. Используйте тестер или миллиамперметр для того чтобы узнать число полюсов - при этом не требуется разбирать мотор. Подключите прибор к одной из обмоток и равномерно вращайте вал. Количество отклонений стрелки - это число полюсов. Учтите, что частота вращения вала при данном методе вычисления несколько ниже полученного результата.

Определение по габаритам

Еще один способ - проведение замеров и вычислений. Многие из тех, кто интересуется, как узнать мощность трехфазного двигателя, предпочитают именно его. Вам понадобятся следующие данные:

  • Диаметр сердечника в сантиметрах (D). Он измеряется по внутренней части статора. Также необходима длина сердечника с учетом отверстий вентиляции.
  • Частота валового вращения (n) и частота сети (f).

Через них вычислите показатель полюсного деления. D умножьте на n и на число Пи - назовем это показание А. 120 умножьте на f - это В. Разделите А на В.

Определение по мощности, выдаваемой двигателем

Здесь опять придется вооружиться калькулятором. Узнайте:

  • число оборотов вала в секунду (А);
  • показатель тяглового усилия мотора (В);
  • радиус вала © - это можно сделать с помощью штангенциркуля.

Определение мощности электродвигателя в Вт осуществляется по следующей формуле: Ах6.28хВхС.

Для чего необходимо знать мощность двигателя

Из всех технических характеристик электродвигателя (КПД, номинальный рабочий ток, частота вращения и т.д.) самая значимая - мощность. Зная главные данные, вы сможете:

  • Подобрать подходящие по номиналам тепловое реле и автомат.
  • Определить пропускную способность и сечение электрических кабелей для подключения агрегата.
  • Эксплуатировать двигатель согласно его параметрам, не допуская перегрузок.

Мы описали, как замерить мощность электродвигателя разными способами. Используйте тот, который в вашем случае будет оптимальным. Применяя любой из методов, вы подберете агрегат, который будет лучшим образом отвечать вашим требованиям. Но самый эффективный вариант, экономящий ваше время и избавляющий вас от необходимости искать информацию и проводить замеры и расчеты - это сохранить технический паспорт в надежном месте и следить за тем, чтобы шильдик с данными не потерялся.

БОНУСЫ ИНЖЕНЕРАМ!:

МЫ В СОЦ.СЕТЯХ:

Навигация по справочнику TehTab.ru: главная страница / / Техническая информация / / Оборудование - стандарты, размеры / / Электродвигатели. Электромоторы. / / Кодировка размеров и мощностей асинхронных электродвигателей по NEMA и IEC. Сопоставимые ряды.

Киловатты и лошадиные силы.

Для северных американцев ватт является единицей потребляемой электрической мощности, а лошадиная сила – единицей любой механической работы. Поэтому, идея использования кВт в качестве единиц работы для них неожиданна. Европейцы в киловаттах о работе думают легко.

1 л.с. = 745.7 Вт = 0.7457кВт

Индексы присоединительных и габаритных размеров электродвигателей NEMA (размеры - см. чертеж и таблицу ниже) .

A =
C =
D =
H =
J =
JM =
JP = Насосный электродвигатель с глухим подсоединением, со специфическими размерами и подшипниками.
M =
N =
T, TS =
TS = То же, но NEMA со стандартным "коротким штоком" под ременные передачи
Y =
Z =

Индексы присоединительных и габаритных размеров электродвигателей IEC (размеры - см. чертеж и таблицу ниже) .

1) Высота от основания электродвигателя до центра вала указывается в мм.

2) Три индекса для обозначения стандарта расстояния между отверстиями основания:

  • S – «маленькое»
  • M – «среднее»
  • L - «большое»

3) Диаметр вала электродвигателя указывается в мм.

4) Индекс FT для присоединительного фланца с резьбовыми отверстиями, или индекс FF для присоединительного фланца с отверстиями без резьбы. Этот индекс сопровождается диаметром окружности проходящей через центры отверстий во фланце.

Если электродвигатель даже не будет установлен на раму, то размер высоты от центра основания до центра вала указывается так, как если бы рама была.

Размеры электродвигателей предписанные (кВт) /л.с. (размер IEC) размер NEMA
Номер рамы (размер IEC) размер NEMA
IEC NEMA (H)D (A)E (B)F (K)H (D)U (C)BA (E)N-W 2- х полюсные 4-х полюсные 6-ти полюсные
56 - (56)- (45)- (35,5)- (5,8)- (9)- (36)- (20)- - - -
63 42 (63)66,7 (50)44,5 (40)21,4 (7)7,1 (11)9,5 (40)52,4 (23)28,6 (0,25)1/3 (0,18)1/4 -
71 48 (71)76,2 (56)54 (45)34,9 (7)8,7 (14)12,7 (45)63,5 (30)38,1 (0,55)2/3 (0,37)1/2 -
80 56 (80)88,9 (62,5)61,9 (50)38,1 (10)8,7 (19)50,9 (50)69,9 (40)47,6 (1,1)1 1/2 (0,75)1 (0,55)2/3
90S 143T (90)88,9 (70)69,8 (50)50,8 (10)8,7 (24)22,2 (56)57,2 (50)57,2 (1,5)2 (1,1)1 1/2 (0,75)1
90L 145T (90)88,9 (70)69,8 (62,5)63,5 (10)8,7 (24)22,2 (56)57,2 (50)57,2 (2,2)3 (1,5)2 (1,1)1 1/2
100L - (100)- (80)- (70)- (12)- (28)- (63)- (60)- (3)4 (2,2)3 (1,5)2
112S 182T (112)114,3 (95)95 ,2 (57)57,2 (12)10,7 (28)28 (70)70 (60)69,9 (3,7)5 (2,2)3 (1,5)2
112M 184T (112)114,3 (95)95 ,2 (70)68,2 (12)10,7 (28)28 (70)70 (60)69,9 (3,7)5 (4)5 4/5 (2,2)-
132S 213T (132)133,4 (108)108 (70)69,8 (12)10,7 (38)44,9 (89)89 (80)85,7 (7,5)10 (5,5)7 1/2 (3)-
132M 215T (132)133,4 (108)108 (89)88,8 (12)10,7 (38)44,9 (89)89 (80)85,7 (-)- (7,5)10 (5,5)7 1/2
160M* 254T (160)158,8 (127)127 (105)104,5 (15)13,5 (42)41,3 (108)108 (110)101,6 (15)20 (11)15 (7,5)10
160L* 256T (160)158,8 (127)127 (127)127 (15)13,5 (42)41,3 (108)108 (110)101,6 (18,5)25 (15)20 (11)15
180M* 284T (180)177,8 (139/5)139,8 (120)120,2 (15)13,5 (48)47,6 (121)121 (110)117,5 (22)- (18,5)25 (-)-
180L* 286T (180)177,8 (139/5)139,8 (139)138,8,2 (15)13,5 (48)47,6 (121)121 (110)117,5 (22)30 (22)30 (15)20
200M* 324T (200)203,3 (159)158,8 (133,5)133,4 (19)16,7 (55)54 (133)133 (110)133,4 (30)40 (30)40 (-)-
200L* 326T (200)203,2 (159)158,8 (152,5)152,4 (19)16,7 (55)54 (133)133 (110)133,4 (37)50 (37)50 (22)30
225S* 364T (225)228,6 (178)117,8 (143)142,8 (19)16,7 (60)60,3 (149)149 (140)149,2 (-)- (37)50/75** (30)40
225M* 365T (225)228,6 (178)117,8 (155,5)155,6 (19)16,7 (60)60,3 (149)149 (140)149,2 (45)60/75** (45)60/75** (37)50
250M* 405T (250)254 (203)203,2 (174,5)174,6 (24)20,6 (65)73 (168)168 (140)184,2 (55)75/100** (55)75/100** (-)-
280S* 444T (280)279,4 (228,5)228,6 (184)184,2 (24)20,6 (75)85,7 (190)190 (140)215,9 (-)- (-)- (45)60/100**
280M* 445T (280)279,4 (228,5)228,6 (209,5)209,6 (24)20,6 (75)85,7 (190)190 (140)215,9 (-)- (-)- (55)75/125**
↓Поиск на сайте TehTab.ru - Введите свой запрос в форму

tehtab.ru

Габаритно-присоединительные размеры электродвигателей АИР. Таблица.

Электродвигатели АИР – самый распространенный тип электродвигателей - трехфазный, с короткозамкнутым ротором общепромышленного назначения. Все АИР производятся с едиными габаритно-присоединительными размерами.

В данной статье в виде удобной таблицы собраны наиболее часто запрашиваемые габаритно-присоединительные размеры электродвигателей АИР. Ими являются такие габаритно-присоединительные размеры: габарит, длина, ширина, высота, диаметр вала, диаметр фланца, высота вала, размеры крепления на лапах, расстояние ось вала - опорная поверхность лап, расстояние опорный торец свободного конца вала - ось ближайших крепительных отверстий на лапах (l31).

Параметры подбора электродвигателя АИР

  • Высота вала (h) или высота оси вращения (габарит) - расстояние от поверхности на которой устанавливается электродвигатель до середины оси вращения вала. Важная характеристика при агрегатировании.
  • Размеры (l30x h41x d24) – длина, высота и ширина электродвигателя интересны для расчета стоимости перевозки и для расчета количество места, отводимого под двигатель или агрегат (насос + электродвигатель).
  • Масса (m) электродвигателя АИР (вес) интересен в первую очередь при расчете дорожных издержек.
  • Диаметр вала (d1) – один из наиболее важных габаритно-присоединительных или установочных размеров, определяет совместимость электродвигателя с конкретным оборудованием и для подбора внутреннего диаметра полумуфты.
  • Диаметр Фланца (d20) (малый и большой фланец) – установочный размер важный для подбора соответствующего ответного фланца, а также диаметр отверстий фланца (d22).
  • Важным габаритно-присоединительным размером электродвигателя АИР является расстояние между центрами крепежных отверстий фланца (l10 и b10).
  • Длина вала (l1) – характеристика электродвигателя АИР необходимая при предварительной подготовке электромотора к работе.
  • Размеры крепления на лапах – монтажный размер, позволяющий заблаговременно подготовить крепежные отверстия на станине к монтажу электромотора.

Таблица Габаритно-присоединительных размеров АИР

Маркировка Количество полюсов Габаритно-присоединительные, мм
l30x h41x d24 Размеры крепления по лапам h d1 d20 d22 l1 m, кг
l31 l10 b10
АИР56А,В 2;4 220х150х140 36 71 90 56 11 115 10 23 3,5
АИР63А,В 2;4 239х163х161 40 80 100 63 14 130 10 30 5,2
АИР71А,В 2;4;6 275х190х201 45 90 112 71 19 165 12 40 8,7
АИР80А 2;4;6 301х208х201 50 100 125 80 22 165 11 50 13,3
АИР80В 2;4;6 322х210х201 50 100 125 80 22 165 11 50 15,0
АИР90L 2;4;6 351х218х251 56 125 140 90 24 215 14 50 20,0
АИР100S 2;4 379х230х251 63 112 160 100 28 215 14 60 30,0
АИР100L 2;4;6 422х279х251 63 140 160 100 28 215 14 60 32,0
АИР112М 2; 4; 6; 8 477х299х301 70 140 190 112 32 265 14 80 48,0
АИР132S 4; 6; 8 511х347х351 89 140 216 132 38 300 19 80 70,0
АИР132М 2; 4; 6; 8 499х327х352 89 178 216 132 38 300 19 80 78,0
АИР160S 2 629х438х353 108 178 254 160 42 300 19 110 116,0
АИР160S 4; 6; 8 626х436х351 108 178 254 160 48 300 19 110 120,0
АИР160M 2 671х436х351 108 210 254 160 42 300 19 110 130,0
АИР160M 4; 6; 8 671х436х351 108 210 254 160 48 300 19 110 142,0
АИР180S 2 702х463х401 121 203 279 180 48 350 19 110 150,0
АИР180S 4 702х463х401 121 203 279 180 55 350 19 110 160,0
АИР180M 2 742х461х402 121 241 279 180 48 350 19 110 170,0
АИР180M 4; 6; 8 742х461х402 121 241 279 180 55 350 19 110 190,0
АИР200М 2 776х506х450 133 267 318 200 55 400 19 110 230,0
АИР200М 4; 6; 8 776х506х450 133 267 318 200 60 400 19 140 195,0
АИР200L 2 776х506х450 133 305 318 200 55 400 19 110 255,0
АИР200L 4; 6; 8 776х506х450 133 305 318 200 60 400 19 140 200,0
АИР225М 2 836х536х551 149 311 356 225 55 500 19 110 320,0
АИР225М 4; 6; 8 836х536х551 149 311 356 225 65 500 19 140 325,0
АИР250S 2 882х591х552 168 311 406 250 65 500 19 140 425,0
АИР250S 4; 6; 8 882х591х552 168 311 406 250 75 500 19 140 450,0
АИР250М 2 907х593х551 168 349 406 250 65 500 19 140 455,0
АИР250М 4; 6; 8 907х593х551 168 349 406 250 75 500 19 140 480,0
АИР280S 2 1111х666х666 190 368 457 280 70 550 24 140 590,0
АИР280S 4; 6; 8 1111х666х666 190 368 457 280 80 550 24 170 790,0
АИР280М 2 1111х666х666 190 419 457 280 70 550 24 140 620,0
АИР280М 4; 6; 8 1111х666х666 190 419 457 280 80 550 24 170 885,0
АИР315S 2 1291х767х667 216 406 508 315 75 550 28 140 1170,0
АИР315S 4; 6; 8;10 1291х767х667 216 406 508 315 90 550 28 170 1000,0
АИР315М 2 1291х767х667 216 457 508 315 75 550 28 140 1460,0
АИР315М 4; 6; 8;10 1291х767х667 216 457 508 315 90 550 28 170 1200,0
АИР355S,M 2 1498х1012х803 254 500/560 610 355 85 680 28 170 1900,0
АИР355S,M 4; 6; 8;10 1498х1012х803 254 500/560 610 355 100 680 28 210 1700,0

Данная таблица – еще одна полезная справочная таблица от ООО «СЛЭМЗ». Таблица содержит исключительно основные параметры: масса, вес, Габаритно-присоединительный, диаметр вала аир, установочный, монтажный. При этом свод габаритно-присоединительных и монтажных не перегружен значениями, а несет только основные характеристики – высоту вала, о креплениях по лапам, по фланцу, диаметр вала, установочные, габаритно-присоединительные, монтажные, длину, ширину, высоту, массу, вес.

slemz.com.ua

Как узнать мощность электродвигателя

В том случае, если при внимательном осмотре корпуса электродвигателя не удалось найти значение его мощности, рассчитайте ее самостоятельно. Для расчета потребляемой мощности измерьте силу тока на обмотках ротора и с помощью формулы найдите потребляемую электродвигателем мощность. Можно определить мощность электродвигателя, зная его конструкцию и габариты. Для расчета полезной мощности электродвигателя найдите частоту вращения его вала и момент силы на нем.

Вам понадобится

  • источник тока, амперметр, линейка, таблица зависимости постоянной двигателя С от числа полюсов, динамометр на стенде.

Инструкция

  • Определение мощности двигателя по токуПодключите двигатель к источнику тока и известным напряжением. После этого, включая в цепь каждой из обмоток амперметр, измерьте рабочий ток двигателя в амперах. Найдите сумму всех измеренных токов. Полученное число умножьте на значение напряжения, результатом будет потребляемая мощность электрического двигателя в ваттах.
  • Определение мощности электродвигателя по его габаритамИзмерьте внутренний диаметр сердечника статора и его длину вместе с вентиляционными каналами в сантиметрах. Узнайте частоту сети переменного тока, в которую подключен двигатель, а также синхронную частоту вращения вала. Для определения постоянной полюсного деления произведение диаметра сердечника на синхронную частоту вала умножьте на 3,14 и последовательно поделите на частоту сети и число 120 (3,14 D n/(120 f)). Это будет полюсное деление машины. Найдите количество полюсов, умножив на 60 частоту тока в сети и поделив результат на частоту вращения вала. Результат умножьте на 2. По эти данным в таблице для определения зависимости постоянной двигателя С от числа полюсов найдите значение константы. Эту константу умножьте на квадрат диаметра сердечника, его длину и синхронную частоту вращения, а результат умножьте на 10^(-6) (P = C D² l n 10^(-6)). Значение мощности получите в киловаттах.
  • Определение мощности, выдаваемой электродвигателемНайдите собственную скорость вращения вала двигателя тахометром в оборотах в секунду. Затем с помощью динамометра определите тяговое усилие двигателя. Для получения значения выходной мощности в ваттах умножьте частоту вращения на число 6,28, на значение силы и радиус вала, который измерьте линейкой или штангенциркулем.

completerepair.ru

Кодировка размеров и мощностей асинхронных электродвигателей по NEMA и IEC. Сопоставимые ряды.

Кодировка размеров и мощностей асинхронных электродвигателей по NEMA и IEC. Сопоставимые ряды

  • NEMA – основной стандарт электрооборудования в Северной Америке. IEC стандарты покрывают Европу (накрывая сверху национальные стандарты), и большинство других мировых стандартов похожи либо на клонов IEC, либо на близкие производные от оного.
  • И NEMA и IEC используют буквенные коды для обозначения специфицированных присоединительных размеров, плюс цифровой код, для обозначения размера от центра основания электродвигателя до центра вала. Буквы вызывают наибольше число недоразумений, к примеру, " D " в NEMA – это " H " в IEC , в то время, как " H " в NEMA – это " K " в IEC. С высотами ситуация лучше: только в одном случае - 56 высота (56 frame), и IEC и NEMA используют одно обозначение с различным смыслом. IEC размер 56 это скорее «дополнительный/переходный» размер, в то время, как NEMA размер 56 исключительно популярен, покрывая диапазон мощностей от ¼ до 1,5 л.с (0,37-1 КВт).

В Таблице 1. (ниже) приведены перекрестные сочетания наиболее похожих механических параметров, все размеры в миллиметрах во избежание дополнительной путаницы. (IEC - метрический стандарт, NEMA - дюймовый). Заметим, что, хотя размеры и не идентичны, они довольно близки. Наибольшие расхождения, как Вы увидите сами, находятся в ряду NEMA "N - W " (IEC " E ") - это размер выступающей части вала электродвигателя. В большинстве случаев NEMA специфицирует намного больший по отношению к IEC размер.

Киловатты и лошадиные силы.

  • Для северных американцев ватт является единицей потребляемой электрической мощности, а лошадиная сила – единицей любой механической мощности. Поэтому, идея использования кВт в качестве единицы мехянической мощности для них неожиданна. Европейцы в киловатт-часах о работе думают легко.
  • 1 л.с. = 745.7 Вт = 0.7457кВт
  • IEC использует киловатты; NEMA - лошадиные силы. Как и NEMA, IEC сопоставляет допустимые уровни мощности и габаритные размеры.
Индексы присоединительных и габаритных размеров электродвигателей NEMA (размеры - см. чертеж и таблицу ниже) .

Буква до цифры ничего стандартного не обозначает. Это буква от производителя мотора, и у него и следует узнавать, что она обозначает.

  • Для небольших электродвигателей (менее 1 л.с.) высота от основания электродвигателя до центра вала указывается как 16х(расстояние в дюймах).
  • Для средних (от 1 л.с.) высота от основания электродвигателя до центра вала указывается как 4х(расстояние в дюймах).
A = NEMA промышленный электродвигатель постоянного тока (DC)
C = NEMA C под торцевое соединение (требуется оговорить тип основания: с или без рамы)
D = NEMA D под фланцевое соединение (требуется оговорить тип основания: с или без рамы)
H = Указывает, что основание имеет размер F больший, чем на той же раме без индекса H . Например, электродвигатель 56 H имеет на раме и присоединительные отверстия по NEMA 56 и NEMA 143-5 T и стандартный шток NEMA 56.
J = NEMA C (торцевое соединение) насосный электродвигатель + шток с резьбой.
JM = Насосный электродвигатель с глухим подсоединением, со специфическими размерами и подшипниками.
JP = Насосный электродвигатель с глухим подсоединением, со специфическими размерами и подшипниками.
M = Под 6 3/4" фланец (мазутная горелка)
N = Под 7 1/4" фланец (мазутная горелка)
T, TS = Номинированный в л.с. наиболее стандартный электродвигатель NEMA со стандартными размерами штока, если никакие дополнительные индексы не следуют за " T " или " TS ."
TS = То же, но NEMA со стандартным "коротким штоком" под ременные передачи
Y = Не соответствующие по габаритам NEMA стандарту электродвигатели; требуйте чертеж для выверки размеров. Может означать как специфический торец (фланец), так и раму.
Z = Не соответствующие NEMA стандарту штоки; требуйте чертеж для выверки размеров.

Что такое IM code ? Это IEC тип конструкции по типу монтажа электродвигателя. Например: B 5 – «без рамы, присоединительный фланец со свободными отверстиями». Иногда еще называется классификацией по IEC (МЭК) 60 034-7.

Индексы присоединительных и габаритных размеров электродвигателей IEC (размеры - см. чертеж и таблицу ниже) .

  1. Высота от основания электродвигателя до центра вала указывается в мм.
  2. Три индекса для обозначения стандарта расстояния между отверстиями основания:
    • S – «маленькое»
    • M – «среднее»
    • L - «большое»
  3. Диаметр вала электродвигателя указывается в мм.
  4. Индекс FT для присоединительного фланца с резьбовыми отверстиями, или индекс FF для присоединительного фланца с отверстиями без резьбы. Этот индекс сопровождается диаметром окружности проходящей через центры отверстий во фланце.
! Если электродвигатель даже не будет установлен на раму, то размер высоты от центра основания до центра вала указывается так, как если бы рама была.

Таблица 1. Сравнение похожих присоединительных и габаритных размеров IEC и NEMA

Размеры электродвигателей
Номер рамы (размер IEC) размер NEMA 3- фазные – TEFC=Totally Enclosed Fan Cooled (NEMA)
IEC NEMA (H)D (A)E (B)F (K)H (D)U (C)BA (E)N-W 2- х полюсные 4-х полюсные 6-ти полюсные
56 - (56)- (45)- (35,5)- (5,8)- (9)- (36)- (20)- - - -
63 42 (63)66,7 (50)44,5 (40)21,4 (7)7,1 (11)9,5 (40)52,4 (23)28,6 (0,25)1/3 (0,18)1/4 -
71 48 (71)76,2 (56)54 (45)34,9 (7)8,7 (14)12,7 (45)63,5 (30)38,1 (0,55)2/3 (0,37)1/2 -
80 56 (80)88,9 (62,5)61,9 (50)38,1 (10)8,7 (19)50,9 (50)69,9 (40)47,6 (1,1)1 1/2 (0,75)1 (0,55)2/3
90S 143T (90)88,9 (70)69,8 (50)50,8 (10)8,7 (24)22,2 (56)57,2 (50)57,2 (1,5)2 (1,1)1 1/2 (0,75)1
90L 145T (90)88,9 (70)69,8 (62,5)63,5 (10)8,7 (24)22,2 (56)57,2 (50)57,2 (2,2)3 (1,5)2 (1,1)1 1/2
100L - (100)- (80)- (70)- (12)- (28)- (63)- (60)- (3)4 (2,2)3 (1,5)2
112S 182T (112)114,3 (95)95 ,2 (57)57,2 (12)10,7 (28)28 (70)70 (60)69,9 (3,7)5 (2,2)3 (1,5)2
112M 184T (112)114,3 (95)95 ,2 (70)68,2 (12)10,7 (28)28 (70)70 (60)69,9 (3,7)5 (4)5 4/5 (2,2)-
132S 213T (132)133,4 (108)108 (70)69,8 (12)10,7 (38)44,9 (89)89 (80)85,7 (7,5)10 (5,5)7 1/2 (3)-
132M 215T (132)133,4 (108)108 (89)88,8 (12)10,7 (38)44,9 (89)89 (80)85,7 (-)- (7,5)10 (5,5)7 1/2
160M* 254T (160)158,8 (127)127 (105)104,5 (15)13,5 (42)41,3 (108)108 (110)101,6 (15)20 (11)15 (7,5)10
160L* 256T (160)158,8 (127)127 (127)127 (15)13,5 (42)41,3 (108)108 (110)101,6 (18,5)25 (15)20 (11)15
Размеры электродвигателей предписанные (кВт) /л.с.(размер IEC) размер NEMA
Номер рамы (размер IEC) размер NEMA 3- фазные – TEFC=Totally Enclosed Fan Cooled (NEMA)
IEC NEMA (H)D (A)E (B)F (K)H (D)U (C)BA (E)N-W 2- х полюсные 4-х полюсные 6-ти полюсные
180M* 284T (180)177,8 (139/5)139,8 (120)120,2 (15)13,5 (48)47,6 (121)121 (110)117,5 (22)- (18,5)25 (-)-
180L* 286T (180)177,8 (139/5)139,8 (139)138,8,2 (15)13,5 (48)47,6 (121)121 (110)117,5 (22)30 (22)30 (15)20
200M* 324T (200)203,3 (159)158,8 (133,5)133,4 (19)16,7 (55)54 (133)133 (110)133,4 (30)40 (30)40 (-)-
200L* 326T (200)203,2 (159)158,8 (152,5)152,4 (19)16,7 (55)54 (133)133 (110)133,4 (37)50 (37)50 (22)30
225S* 364T (225)228,6 (178)117,8 (143)142,8 (19)16,7 (60)60,3 (149)149 (140)149,2 (-)- (37)50/75** (30)40
225M* 365T (225)228,6 (178)117,8 (155,5)155,6 (19)16,7 (60)60,3 (149)149 (140)149,2 (45)60/75** (45)60/75** (37)50
250M* 405T (250)254 (203)203,2 (174,5)174,6 (24)20,6 (65)73 (168)168 (140)184,2 (55)75/100** (55)75/100** (-)-
280S* 444T (280)279,4 (228,5)228,6 (184)184,2 (24)20,6 (75)85,7 (190)190 (140)215,9 (-)- (-)- (45)60/100**
280M* 445T (280)279,4 (228,5)228,6 (209,5)209,6 (24)20,6 (75)85,7 (190)190 (140)215,9 (-)- (-)- (55)75/125**
*Высота от оси штока для этих рядов IEC на практике могут отличаться от производителя к производителю.
** Указанная мощность в л.с. это наиболее похожий ряд NEMA с наиболее похожими размерами. некоторых случаях мощность ряда NEMA существенно выше аналогичной IEC.

Соотношение габариты/ мощность в IEC и NEMA хорошо совпадают в начале таблицы, но в больших размерах они отличаются настолько, что вызывают сомнения в возможности применения одного из стандартов. Посмотрим соотношение IEC 115 S / NEMA 364 T для 4-х полюсных электродвигателей. NEMA декларирует 75 л.с. для того же присоединительного размера рамы, где IEC декларирует 50 л.с. Если 50 л.с. достаточно то Вы, конечно, могли бы взять и раму согласно NEMA 326 T, но как быть с присоединительными размерами? Если же взять нужную раму (364 T) то следует подумать, не повредит ли слишком мощный мотор приводной механизм, или даже нагрузку.

Стандарты размеров электродвигателей:

IEC 60034 – Номиналы и рабочие характеристики и все с этим связанное (испытания, размеры габаритные, конструкции… IEC 60072 – Размеры и ряды выходных мощностей. NEMA MG – Электродвигатели и генераторы.

В основе работы мотора лежит принцип электромагнитной индукции. Прибор состоит из двух частей. Неподвижная часть — статор для двигателей переменного тока или индуктор для двигателей постоянного тока. Подвижная часть — ротор для двигателей переменного тока или якорь для двигателей постоянного тока. Производители выпускают моторы разных технических характеристик и комплектаций, но подвижная и неподвижная часть остаются без изменений.

Что такое мощность электродвигателя

Мощность электродвигателя характеризует скорость преобразования электрической энергии, ее принято измерять в ваттах. Чтобы понять, как это работает, нам понадобится две величины: сила тока и напряжение. Сила тока — количество тока, которое проходит через поперечное сечение за какой-то отрезок времени, ее принято измерять в амперах. Напряжение — величина, равная работе по перемещению заряда между двумя точками цепи, ее принято измерять в вольтах.

Если говорить простыми словами, силу тока и напряжение можно сравнить с водой. Сила тока — скорость, с которой течет вода по трубам. Напряжение видно на примере двух емкостей, соединенные между собой трубкой. Если вы поставите одну емкость выше другой, вода будет вытекать до тех пор, пока уровни в обеих емкостях не сравняются. Именно перепад высот и будет напряжением. После того, как вы поставите заглушку между двумя емкостями, течение воды (ток) остановится, но напряжение останется.

Для расчета мощности используется формула N = A/t, где:

N - мощность;

А - работа;

Расчет мощности электродвигателя

Производители указывают на электрооборудовани все технические параметры. «Зачем тогда делать какой-то расчет?», - скажете вы. Но дело в том, что заявленная мощность — это не фактическая мощность электродвигателя, а максимально допустимая мощность электропотока. Так что, если на вашей технике или инструменте указана мощность, к примеру, в 1000 Вт, это совсем не то, о чем вы думаете.

Три способа определить мощность электродвигателя

Для расчета мощности существует не один десяток способов. Мы не будем говорить о каждом из них, остановившись лишь на самым простых и доступных.

Первый способ. Расчет по таблицам

Для этого способа расчета вам понадобится линейка или штангенциркуль. С их помощью измерьте диаметр вала вашего электродвигателя, длину мотора (выступающие части вала не учитывайте) и расстояние до оси. С использованием полученных цифр вы сможете определить мощность электродвигателя по таблицам технических характеристик двигателей. Найти такие таблицы не составит труда — они есть в открытом доступе в сети интернет. Открыв таблицу, определите серию электродвигателя и, соответственно, его технические характеристики.

Второй способ. Расчет по счетчику

Указанный способ считается самым простым, вам не понадобятся ни дополнительное оборудование, ни расчеты. Перед тем, как приступить к измерению мощности электродвигателя, выключите все электроприборы из сети. Включите испытуемый электродвигатель и запустите его в работу на 5-7 минут. Если в вашем доме установлен современный счетчик, он покажет нагрузку в киловаттах.

Третий способ. Расчет по габаритам

Для этого способа вам понадобится линейка или штангенциркуль. Измерьте диаметр сердечника с внутренней стороны и длину (учитывайте длину отверстий вентиляции). Определите частоту сети и синхронную частоту вращения вала. Умножьте диаметр сердечника в сантиметрах на синхронную частоту вращения вала, полученное значение умножьте на 3,14, поделите на частоту сети, умноженную на 120.