Рельсовая сталь. Общая характеристика рельсовых сталей. Применение и марки рельсовой стали

Рельсовую сталь (∼0,60–0,80 % С), и аналогичную ей по составу кордовую, выплавляют в кислородных конвертерах и в дуговых печах. Наиболее сложной задачей производства этой стали является получение достаточно низкого содержания фосфора за время окисления углерода до заданной в стали концентрации. Для решения этой задачи принимаются специальные меры соответственно особенностям плавки в конвертере или дуговой печи.

В кислородном конвертере с верхним дутьем или комбинированным дутьем сверху и снизу, как было показано выше, дефосфорация начинается с первых минут продувки. Однако при высоком содержании фосфора в чугуне для получения допустимого содержания фосфора в стали при остановке на заданном высоком содержании углерода степень дефосфорации недостаточна. Как при содержании углерода ∼0,6–0,9 % по ходу плавки содержание фосфора стабилизируется или даже начинает повышаться; понижение содержания фосфора происходит далее при значительно более низком содержании углерода. Это вызывает трудность дефосфорации при производстве высокоуглеродистой стали. В случае плавки с остановкой процесса на заданном высоком содержании в стали углерода она при-водит к необходимости промежуточных повалок конвертера для смены шлака путем его скачивания и наводки нового. Это усложняет процесс, вызывает понижение производительности, повышение рас-хода шлакообразующих и чугуна.

Повалку конвертера для смены шлака производят на разных за-водах при содержании углерода 1,2–2,5 %. При высоком содержании фосфора в чугуне (0,20–0,30 %) шлак сменяют дважды при содержании углерода 2,5–3,0 % и при 1,3–1,5 %. После скачивания шлака новый наводят из свежеобожженой извести. Содержание FeO в шлаке на уровне 12–18 % поддерживают, изменяя уровень фурмы над ванной. По ходу плавки для разжижения шлака присаживают плавиковый шпат – 5–10 % массы извести. В результате дефосфорации к концу продувки до заданного в готовой стали содержания углерода получают содержание фосфора в металле ≤ 0,010–0,020 %. На выпуске в ковш металл раскисляют присадками ферросилиция и алюминия. При этом очень важной операцией является отсечка конвертерного шлака. Попадание его в ковш вызывает рефосфорацию в процессе раскисления и особенно при внепечной обработке восстановительным шлаком для десульфурации.

Получила некоторое распространение и технология выплавки рельсовой и кордовой стали в конвертерах с продувкой до низкого содержания углерода (0,03–0,07 %) с последующим науглероживанием в ковше специально приготовленными твердыми карбюризаторами (нефтяным коксом, антрацитом) Окончательную корректировку содержания углерода в стали производят на установке вакуумной обработки.

Продувка металла в конвертере до низкого содержания углерода обеспечивает глубокую дефосфорацию. Необходимо лишь на выпуске обеспечить надежную отсечку шлака для предупреждения возможности попадания его в ковш и, как следствие, рефосфорации.

Применение технологии выплавки стали в конвертере с продувкой до низкого содержания углерода с последующим науглероживанием в ковше требует использования чистых по содержанию вредных примесей и газов карбюризаторов, что вызывает необходимость их специальной подготовки и создает подчас значительные трудности. Вызывает сложности и получение нужного содержания углерода в узких пределах. Это ограничивает применение такой технологии.

Не нашла широкого применения используемая на некоторых заводах плавка в конвертере с последующим науглороживанием чугуном, предварительно залитым в ковш перед выпуском плавки из конвертера. Для этого требуется чугун, достаточно чистый по содержанию фосфора. Окончательное науглероживание раскисленного металла, с целью надежного получения содержания углерода в требуемых пределах, проводят твердыми карбюризаторами в процессе вакуумной обработки.
В дуговых печах рельсовую и кордовую сталь выплавляют по обычной, описанной выше технологии, применяя меры для интенсивного удаления фосфора из металла – присадки железной руды в завалку и в начале короткого окислительного периода, с непрерывным сходом шлака и его обновлением присадками извести. Обязательно также предупреждение попадания шлака в сталеразливочный ковш.

Вследствие низкого содержания кислорода в высокоуглеродистой рельсовой стали высокая степень чистоты ее по оксидным включениям может быть достигнута и без применения относительно сложной внепечной обработки вакуумом или в коше-печи. Для достижения такой цели достаточна продувка металла в коше инертным газом. Но при этом поступающий в ковш печной шлак, во избежание вторичного окисления им металла, не должен быть окислительным. Поэтому, перед такой внепечной обработкой выплавку рельсовой стали в ДСП производят с предварительным раскислением металла в печи кремнием и марганцем, присаживаемых в виде ферросилиция и ферромарганца или силикомарганца. Шлак перед выпуском раскисляют порошком кокса или электро-дов и гранулированным алюминием, а иногда и порошком ферросилиция. Следует, однако, иметь в виду, что при раскислении шлака, тем более кремнием, вызывающим образование SiO2, происходит восстановление фосфора. Поэтому такая операция допустима лишь после достаточно глубокой дефосфорации со сменой шлака и удалением фосфора из ванны. Окончательное раскисление стали кремнием и алюминием производят в ковше во время выпуска. Затем металл в ковше продувают инертным газом для его гомогенизации и, главным образом, для удаления хотя бы части скоплений (кластеров) включений Al2O3, вызываю-щих расслоения в рабочей части головок рельсов во время их эксплуатации. Следствием этого расслоения может быть полное отделение от-слоенных пластинок на головке рельса и преждевременный выход его из строя.

Более эффективным способом предупреждения образования расслоений в рельсовой стали, выплавленной как в конвертерах, так и в дуговых печах, является обработка жидкого металла в ковше кальцием. Как было показано, это производится введением в жидкий металл порошка силикокальция, плакированного в проволоку, или вдуваемого в токе несущего газа.

В статье мы расскажем Вам о 8 главных технических моментах, связанных с применением рельсов на железной дороге:

2. Рельсы в разных странах

4. Рельсовые плети

5. Износ рельсов и методы его предотвращения.

6. Химический состав

7. Заключение

Итак, начинаем!

1. Понятие о рельсах и их свойства

Рельсы - основной элемент верхнего строения пути, представляющий собой стальные балки, которые укладываются на шпальную или другие опоры. Назначение рельсов: принятие и передача нагрузки от колес подвижного состава на подрельсовые опоры и направляют колеса подвижного состава; также выступают электрическими проводниками на участках с автоблокировкой и электротягой.

Образуют рельсы обычно двух-ниточный путь, но иногда допускается использование одного рельса.

Соединение происходит двумя способами: специальными скреплениями, либо сваркой (бесстыковой путь).

Свойства, которыми должны обладать рельсы:

1. Достаточная прочность (за счет стали)

2. Большая инертность и сопротивляемость

3. Долговечность

v Высокая твердость

v Износостойкость

v Вязкость

4. Высокая контактно-усталостная выносливость.

Известны рельсы, такие как уголковые, грибовидные, двухголовые, широкоподошвенные. Последние из них используются в настоящее время повсеместно во всем мире.

Чугунные и железные рельсы устарели, их сменили до нашего времени стальные.

2. Рельсы в разных странах

Различия укладки в путь рельсов России и некоторых других стран (указаны в таблице 1) достаточно существенны и подразумевают использование в определении мощности таких характеристик, как:

Масса 1 погонного метра, выраженного в кг,

Качество рельсовой стали.

Таблица 1.

Страна

Вагонные осевые нагрузки, тс/ось

Тип рельса

Масса рельса, кг/м

Россия

23,5 - 24

Р65

64.72

США, Канада

30-35

65,53 - 69,4

Европа

22,5 - 25

UJC 60

60,34

3. Эволюция длин и переход к рельсовым плетям

С течением времени в мировом масштабе проводилось увеличение длины рельсов. Небольшой экскурс в историю по так называемой «эволюции» рельсовых длин:

Россия: в XIX веке укладывали рельсы длиной 5,49 м, затем 10,67 м. Более поздние периоды были отмечены удлинением до 12,5 м, позже - 25 м.

США: вначале применялась длина 11,89 м, позже она удвоилась и стала равняться 23,78 м.

Западная Европа. Австрия, Германия: длина в 15 м также удвоилась до 30 м;

Англия, Франция, Италия, Швейцария: увеличение с 18до 36 м.

Такая тенденция связана со стремлением уменьшить количество стыков, т.к. они сокращают эффективность движения. Поясним: в стыковой зоне образуется добавочное динамическое воздействие на путь, по которому движется состав, несмотря на наличие элементов соединения стыков, таких как накладки, болты, костыли и другие крепежные изделия. Поэтому постепенно стали переходить на рельсовые плети. О них мы и поговорим в пункте 4.

4. Рельсовые плети.

В настоящее время повсеместно внедряется бесстыковой путь, представляющий собой сварные плети длиной от 250 до 800 м, между ними уложены 3- 4 уравнительных рельса длиной каждый по 12,5 м.

Со временем уравнительные рельсы стали не нужны, сварные плети прошли этап удлинения до 3 км (ранее этот отрезок пути - так называемый блок-участок - включал 4 уравнительных рельса).

В настоящее время распространен бесстыковой путь без использования уравнительных рельсов. здесь имеет место два варианта конструкции:

Блок-участки рельсовых плетей в стыковой зоне соединяются электроизолирующими накладками,

Сварка плетей от станции до станции. В этом случае образуются непрерывные сварные плати, путем электроконтактной или газопрессовой сварки на РСП (рельсосварочных предприятиях).

5. Износ рельсов и методы его предотвращения.

Как любой элемент рельсового пути, рельсы подвержены износу, то есть снижению его рабочих свойств, как то:

Коррозия подошвы,

Износ головки,

Поверхностные и внутренние дефекты в самом металле.

Всё это ведет к уменьшению максимально допустимой нормативной наработке тоннажа, пропускаемого по рельсовой нити. В России данные параметры тоннажа вариьируются в диапазоне 600-700 млн тонн брутто на пямых участках железной дороги, а также кривых с R >1000 м; на кривых - 300м < R < 1000м - тоннаж составляет 150-350 млн тонн брутто.

Выделяют технические мероприятия, проводимые для поддержания служебных свойств рельсов и продления их срока службы:

v Периодическое выравнивание головки посредством шлифовки, фрезерования либо срожки поверхности головки с ликвидацией волнообразного износа. Он характерен, когда рельсы испытывают воздействие колёс подвижного состава периодично с чередованием максимальной и минимальной нагрузок.

v Профильная шлифовка рельсов, с помощью поездов со специальным оборудованием. Они формируют ремонтные профили головки.

v Лубрикация, т.е. дозированная смазка боковой рабочей грани наружных рельсов в кривых R <500-600 м с применением лубрикаторов. Они могут быть стационарными, либо установленными на вагонах, дрезинах, локомотивах.

v Замечен факт, что рельсы можно практически полностью восстановить, уменьшим боковой износ (чуть ли не до нуля), благодаря крайне обильной смазке.

6.Химический состав рельсов.

Определяет качество рельсовой стали. В таблице 2 приведены химические элементы и свойства, влияющие на этот показатель.

Таблица 2.

Химический элемент

Влияние на качество рельсовой стали

Углерод, С

Увеличение прочности при изгибе

Увеличение твердости

Увеличение износостойкости

Марганец , Mn

Увеличение твердости

Увеличение износостойкости

Увеличение вязкости

Кремний , Si

Увеличение твердости

Увеличение износостойкости

Фосфор , P

Большое содержание фосфора вредит рельсам при низких температурах. Они становятся хрупкими

Сера , S

Большое содержание фосфора вредит рельсам при низких температурах. Они становятся красноломкики (при прокате рельсов образуются трещины)

Мышьяк, As

Повышение усталосной прочности

Повышение ударной вязкости

Незначительное уменьшение твердости

Незначительное уменьшение износостойкости

Ванадий, титан, цирконий

V, Ti, Zr

Микрорегулирующие и модифицирующие добавки, улучшающие структуру и качество стали

Заключение

Тенденции в жд отрасли таковы, что как в России, так и за рубежом идет разработка рельсов без металлических включений, с низким уровнем остаточных напряжений (после проката и правки на заводе), также обладающих прочностными характеристиками, которые исключают появление дефектов контактно-усталостного происхождения.

Если у Вас возникла необходимость в покупке рельсов, как новых, так и с износом, обращайтесь к нам! Мы всегда рады помочь с выбором и поставкой товара.

ООО «УралВнешТоргЭкспорт» - надежный поставщик в сфере поставок жд материалов. Мы ценим Ваше время и готовы поставлять лишь качественную продукцию.

Звоните, пишите нам! Проконсультируем и ответим на возникшие вопросы. Наши контакты указаны

Современный железнодорожный транспорт не похож на тот, что был 100 лет назад. Скорость поездов с того времени увеличилась почти в 5 раз, а грузоподъемность в 8-10. Такие количественные изменения не могли не затронуть и рельсы, по которым перемещается локомотив. Их износостойкость, прочность и твердость также достигли нового уровня своих значений. В нынешнее время рельсовая сталь обладает целом рядом функциональных особенностей.

Химический состав

Рельсовая сталь - это группа сталей, которых объединяет общий способ применения. А именно, изготовление рельсовых путей сообщения для железнодорожного транспорта. В основе фазовой структуры сплава лежит мелко игольчатый перлит. Для выплавки металла используют либо конверторные, либо обычные дуговые сталеплавильные печи.

Рельсовые марки стали подразделяются на 2 группы в зависимости от вида применяемых раскислителей:

  1. В 1-ую группу входит сталь, раскисленная ферромарганцем или ферросилицием.
  2. Вторая - включает в себя раскислители на основе алюминия. Металл 2-ой группы является предпочтительней, т.к. содержит в себе меньший процент неметаллических включений.

Химический состав рельсы полностью регулируется государственным стандартом ГОСТ Р 554 97- 2013. Согласно ему, помимо основного компонента железа, сплав должен включать в себя следующий набор элементов:

  • Углерод (0,71-0,82%) является базовой составляющей любой стали. Главное назначение углерода - это увеличение механических характеристик стального сплава. Происходит это за счет связывания молекул железа частицами углерода, в результате чего образуются более крупные, твердые и одновременно прочные молекулы карбидов железа. К тому же углерод позволяет стали дополнительно упрочняться при воздействии на нее повышенной температуры. Таким образом, твердость и предел прочности рельс может быть увеличен еще на 100%.
  • Марганец (0,25-1,05%) способствует улучшению механических свойств рельсы. Благодаря его добавлению в состав удается увеличить значение ударной вязкости в среднем на 20-30%. Твердость и износостойкость также повышаются. Но в отличие от углерода, изменение данных показателей происходит без ухудшения его пластичных свойств, что играет не мало важную роль для технологичности рельсовой стали
  • Кремний (0,18-0,40%) удаляет остатки кислорода, улучшая тем самым внутреннюю кристаллическую структуру. Снижает вероятность риска образования ликвации - химической неоднородности сплава по своему химическому составу. Все это дает возможность увеличить долговечность железнодорожного пути в 1,3-1,5 раза.
  • Ванадий (0,08-0,012%) ответственен за контактную прочность рельсы. При добавлении его в сплав он сразу же связывается углеродом, образовывая карбиды ванадия. Данное соединение имеет повышенную износостойкость и плотность, тем самым увеличивая нижний порог предела выносливости сплава.
  • Азот (0,03-0,07%) относится к группе вредных примесей. Его отрицательное воздействие заключается в нейтрализации легирования стали ванадием. Т.е. вместо карбидов образуются нитриды ванадия. Они обладают низкими значениями механических свойств. Не способны термоупрочняться. В общем, сводят дорогостоящее легирование ванадием на нет.
  • Фосфор (до 0,035%) входит в группу нежелательных элементов в составе. Его главный отрицательный эффект - это повышение их хрупкости. Железнодорожное полотно обладает достаточной твердостью, но при этом не имеет должного значения прочности. Все это приводит к высокой вероятности образования трещин и последующему разлому рельсы.
  • Сера (до 0,045%) снижает технологические параметры стали. Податливость сплава во время его горячей обработки давлением резко падает. Возникает повышенный риск образования трещин. Рельсы, полученные из такой стали, отправляются в брак по причине обладания повышенной хрупкостью.

В зависимости от содержания серы и фосфора рельсовые стали подразделяются 2 сорта. Первый сорт имеет в своем составе меньший процент данных вредных примесей. Он более предпочтителен и применяется на более ответственных участках железнодорожного пути.

Механические свойства

Рельсовые марки стали отличаются повышенной стойкостью к циклическим нагрузкам. Их предел прочности в зависимости от марки колеблется в пределах от 800 до 1000 МПа. Деформироваться рельсовая сталь начинает в промежутке от 600 до 810 МПа. Опять же, это зависит от того соотношения легирующих элементов в составе стального сплава

Сталь хорошо справляется с ударной нагрузкой. Значение ударной вязкости составляет 2,5 кг/см2. Твердость сплава находится в прямой зависимости от качества проведения термической обработки. Объемная закалка способно увеличить данный параметр до 60 единиц по шкале Роквелла.

Рельсовая марка обладает умеренной пластичностью. Относительное сужение для нее равняется 25%, что позволяет прокатывать рельсы горячим способом. Предварительно нагрев их до температуры 900-1000 ºC.

Применение и марки рельсовой стали

Как уже было сказано ранее, основное назначение данного металла — это изготовление рельс железнодорожного пути. Ниже приведен список тех марок, которые наиболее активно применяются для этой цели:

  • Сталь 76. Одна из наиболее востребованных марок в производстве рельс. Основное назначение - изготовление рельс типа РП50 и РП65, которые применяется преимущественно при прокладке железнодорожных путей промышленного транспорта с широкой колеёй.
  • Сталь 76Ф. От вышеописанной стали ее отличает дополнительное содержание ванадия в своем составе. Рельсы данной марки обладают большим ресурсом работы - способны пропускать через себя большее количество локомотивов.
  • Сталь К63. Данная марка используется при изготовлении крановых рельс. Она дополнительно легирована 0,3% никеля. Металл помимо оптимальной прочности, обладает несколько лучшим значением коррозионностойкости.
  • Сталь К63Ф. Рельсы, изготовленные из данной марки, отличаются большей циклической прочностью за счет добавления в их состав вольфрама.
  • Сталь М54. Имеет повышенное содержание марганца. Применяется для производства стыковочных рельс-накладок.
  • Сталь М68. Используются при прокладке путей верхнего строения.

Рельсовая марка стали сегодня является одним из ключевых материалов, применяемых при изготовлении железнодорожного полотна. Это стало благодаря оптимальным значениям механических характеристик и, что не менее важно, низкой стоимостью такого рода рельс. Но до сих пор, процесс по поиску оптимального химического состава стали данной группы продолжается. Кто знает какие решения будут приняты через год, и как они повлияют на долговечность железнодорожных путей.

Изобретение относится к черной металлургии, в частности к производству стали для железнодорожных рельсов низкотемпературной надежности. Предложена рельсовая сталь, содержащая компоненты в следующем соотношении, мас.%: углерод 0,69 - 0,82, марганец 0,60 - 1,05, кремний 0,18 - 0,45, ванадий 0,04 -0,10, азот 0,008 - 0,020, алюминий 0,005 - 0,020, титан 0,003 - 0,010, кальций 0,002 -0,010, магний 0,003 - 0,007, хром 0,05 - 0,30, никель 0,05 - 0,30, медь 0,05 - 0,30, сера 0,005 - 0,010, фосфор не более 0,025, железо - остальное, при этом суммарное содержание хрома, никеля и меди не превышает 0,65 мас.%, а соотношение содержаний кальция и серы находится в пределах 0,4 - 2,0. Техническим результатом изобретения является возможность создания рельсов с повышенной ударной вязкостью и эксплуатационной надежностью при низких температурах вплоть до -60 o C. 1 табл.

Изобретение относится к области черной металлургии, в частности, к производству стали для железнодорожных рельсов низкотемпературной надежности. Известны стали, имеющие следующий химический состав, мас.%; 1. 0,65 - 0,85 C; 0,18 - 0,40 Si; 0,60 - 120 Mn; 0,001 - 0,01 Zr; 0,005 - 0,040 Al; 0,004 - 0,011 N; один элемент из группы, содержащей Ca и Mg 0,0005 - 0,015; 0,004 - 0,040 Nb; 0,05 - 0,30 Cu; Fе - ост. 2. 0,65 - 0,89 C; 0,18 - 0,65 Si; 0,60 - 1,20 Mn; 0,004 - 0,030 N; 0,005 - 0,02 Al; 0,0004 - 0,005 Ca; 0,01 - 0,10 V; 0,001 - 0,03 Ti; 0,05 - 0,40 Cr; 0,003 - 0,10 Mo; карбонитриды ванадия 0,005 - 0,08, при этом кальций и алюминий находятся в соотношении 1: (4 - 13), Fe - ост. Эти стали предназначены для изготовления рельсов, в частности, вторая сталь - для рельсов, предназначенных для эксплуатации на магистралях с повышенной грузонапряженностью. Однако они не обеспечивают требуемой работоспособности рельсов в условиях низких климатических температур, характерных для обширных районов Сибири. Наиболее близкой по технической сущности и достигаемому результату к предлагаемой является сталь, имеющая следующий химический состав, мас.%: 0,69 - 0,82 C; 0,45 - 0,65 Si; 0,60 - 0,90 Mn; 0,004 - 0,011 N; 0,005 - 0,009 Ti; 0,005 - 0,009 Al; 0,02 - 0,10 V; 0,0005 - 0,004 Ca; 0,0005 - 0,005 Mg; 0,15 - 0,40 Cr; Fe -ост. Однако для нее характерна недостаточно дисперсная микроструктура, которая не может обеспечить требуемый уровень ударной вязкости при низких температурах (-60 o C). Кроме того, содержание серы в этой стали может достигать 0,035%. Вследствие этого в рельсах присутствует значительное количество строчек сульфидов марганца, что понижает ударную вязкость рельсов как в продольном, так и в поперечном направлениях. В связи с тем, что ударная вязкость коррелирует с усталостной прочностью, можно считать, что значения ее при низких температурах однозначно коррелируют с низкотемпературной надежностью, а рельсы из указанной стали не обладают достаточным ресурсом усталостной прочности. Поставлена задача создать рельсовую сталь, из которой можно производить рельсы, обладающие повышенной эксплуатационной надежностью при низких температурах, вплоть до -60 o C. Поставленная задача достигается тем, что рельсовая сталь, содержащая углерод, марганец, кремний, ванадий, азот, алюминий, титан, кальций, магний и хром, дополнительно содержит никель и медь при следующем соотношении компонентов, мас.%: Углерод - 0,69 - 0,82 Марганец - 0,60 - 1,05 Кремний - 0,18 - 0,45 Ванадий - 0,04 - 0,10 Азот - 0,008 - 0,020 Алюминий - 0,005 - 0,020 Титан - 0,003 - 0,010 Кальций - 0,002 - 0,010
Магний - 0,003 - 0,007
Хром - 0,05 - 0,30
Никель - 0,05 - 0,30
Медь - 0,05 - 0,30
Сера - 0,005 - 0,010
Фосфор - Не более 0,025
Железо - Остальное
при этом суммарное содержание хрома, никеля и меди не превышает 0,65 мас. %, а соотношение содержаний кальция и серы находится в пределах 0,4 - 2,0
Введение в сталь никеля и меди заметно понижает температуру начала перлитного превращения при охлаждении рельсовой стали из аустенитного состояния. Вследствие этого происходит заметное измельчение структуры, а именно, уменьшается величина колоний перлита, межпластинчатое расстояние перлита и, следовательно, толщина пластин цементита. Поскольку в стали со структурой пластинчатого перлита ударная вязкость в значительной степени зависит от величины колоний перлита и толщины пластин цементита, то их измельчение приводит к повышению ударной вязкости как при положительной, так и отрицательной температурах вплоть до -60 o C, а, следовательно, к повышению низкотемпературной надежности рельсов. При введении в сталь никеля и меди в количествах, меньших, чем 0,05%, они не оказывают заметного влияния на структуру и ударную вязкость рельсов. Если количество никеля и меди превышает 0,3% каждого или суммарное содержание хрома, никеля и меди превосходит 0,65%, то в стали, наряду с перлитной структурой, образуются участки бейнитной структуры. Ударная вязкость такой стали со смешанной структурой заметно понижается. Соотношение кальция и серы, равное 0,4 - 2,0, обеспечивает формирование вместо строчек сульфида марганца большой протяженности коротких строчек (Mn, Ca)S, глобулярных сульфидов кальция и оболочек из сульфидов кальция на поверхности алюминатов кальция. Глобуляризация сульфидов повышает ударную вязкость в продольном и поперечном направлении, уменьшает анизотропию ударной вязкости. В связи с этим заметно уменьшается опасность развития трещин при эксплуатации рельсов и повышается их надежность, особенно при низких температурах. Если отношение содержаний кальция к сере меньше, чем 0,4, то не происходит глобуляризации сульфидов и повышения ударной вязкости стали. Отношение содержаний кальция к сере больше, чем 2,0, трудно обеспечить при существующих технологиях выплавки, десульфурации стали и введении в нее кальция
Необходимо отметить, что поскольку уровень ударной вязкости, особенно при низких температурах, рельсовой стали довольно низок, что связано с особенностями ее химического состава, то лишь совместное одновременное воздействие на дисперсность микроструктуры и на состав и форму сульфидов заметно повышает низкотемпературную надежность рельсов. Существенными отличиями предлагаемой стали при заявляемом соотношении компонентов являются: введение в сталь никеля и меди при суммарном содержании никеля, меди и хрома не выше 0,65% и соотношение содержаний кальция и серы в пределах 0,4 - 2,0. По имеющимся в научно-технической литературе сведениям никель и медь обычно вводят в сталь, в том числе в рельсовую, для повышения ее прокаливаемости и получения полностью мартенситной структуры, повышения прочности и твердости стали. В предлагаемом изобретении никель и медь вводятся в сталь для измельчения микроструктуры и повышения ударной вязкости. В литературе нами не обнаружено данных о совместном влиянии никеля и меди и глобуляризации сульфидов на ударную вязкость и низкотемпературную надежность. В силу вышеизложенного заявляемое техническое решение соответствует критерию "новизна". Примеры конкретной реализации предлагаемого изобретения приведены в таблице, где указаны химический состав сталей и свойства рельсов, полученных из этих сталей. Из предлагаемой стали и стали-прототипа в условиях Кузнецкого металлургического комбината были прокатаны железнодорожные рельсы типа Р65, которые термообработаны путем объемной закалки в масле от 840 - 850 o C и отпуска при 450 o C по действующим на комбинате технологическим инструкциям. Результаты, приведенные в таблице, показывают, что при введении в сталь никеля и меди в таком соотношении, что суммарное количество никеля, меди и хрома не превышает 0,65%, а отношение содержаний кальция и серы находится в пределах 0,4 - 2,0, ударная вязкость стали при температуре 20 o C в продольном направлении рельса составляет 4,0 - 6,0 кгсм/см 2 , в поперечном направлении - 3,6 - 5,7 кгсм/см 2 , показатель анизотропии n = 0,90 - 0,98. При этих условиях ударная вязкость стали на продольных образцах при -60 o C находится в пределах 2,0 - 2,7 кгсм/см 2 . При содержании никеля и меди, суммарном содержании никеля, меди и хрома, отношении содержания кальция к сере ниже и выше указанных пределов значения ударной вязкости и ее анизотропии не отличаются заметно от значений этих параметров для стали-прототипа. Согласно техническим условиям ТУ 14-1-5233-93 рельсы с KCU-60 не менее 2,0 кгсм/см 2 относятся к рельсам низкотемпературной надежности. Таким образом, выплавка предлагаемой стали позволит увеличить объем производства рельсов повышенной низкотемпертурной надежности для районов с низкими климатическими температурами. Источники информации
1. Авт. св. СССР N 1435650 М. кл. C 22 C 38/16, 1987. 2. Пат. РФ N 1633008 М. кл. C 22 C 38/16, 1989. 3. Авт. св. СССР N 1239164, М.кл. C 22 C 38/28, 1984.

Формула изобретения

Рельсовая сталь, содержащая углерод, марганец, кремний, ванадий, азот, алюминий, титан, кальций, магний и хром, отличающаяся тем, что она дополнительно содержит никель и медь при следующем соотношении компонентов, мас.%:
Углерод - 0,69 - 0,82
Марганец - 0,60 - 1,05
Кремний - 0,18 - 0,45
Ванадий - 0,04 - 0,10
Азот - 0,008 - 0,020
Алюминий - 0,005 - 0,020
Титан - 0,003 - 0,010
Кальций - 0,002 - 0,010
Магний - 0,003 - 0,007
Хром - 0,05 - 0,30
Никель - 0,05 - 0,30
Медь - 0,05 - 0,30
Сера - 0,005 - 0,010
Фосфор - Не более 0,025
Железо - Остальное
при этом суммарное содержание хрома, никеля и меди не превышает 0,65 мас. %, а соотношение содержаний кальция и серы находится в пределах 0,4 - 2,0.

Похожие патенты:

Изобретение относится к металлургии сталей, в частности, используемых в судостроении и гидротурбостроении, например при производстве гребных винтов и лопаток гидротурбин, работающих в коррозионной среде (морской и пресной воде) под воздействием значительных статических и циклических нагрузок

Изобретение относится к области металлургии, в частности к жаропрочным сталям, и может быть использовано при производстве центробежных труб, предназначенных для изготовления змеевиков трубчатых печей, роликов и других деталей, работающих в агрессивных средах при высоких температурах и давлениях

Изобретение относится к аустенитной нержавеющей стали, содержащей включения выбранного состава, полученные произвольно, состав в зависимости от общего состава стали выбирают таким, чтобы физические свойства этих включений благоприятствовали их горячей трансформации стали

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

  • Введение
  • 1. Общая характеристика рельсовых сталей
  • 2. Химический состав и требования к качеству рельсовой стали
  • 3. Технология производства рельсовых сталей
  • 4. Производство рельсовой стали с применением модификаторов
  • Заключение
  • Список использованных источников

Введение

Рельсовая сталь - это углеродистая легированная сталь, которая легируется кремнием и марганцем. Углерод дает стали такие характеристики, как твердость и износостойкость. Марганец увеличивает эти качества и повышает вязкость. Кремний также делает рельсовую сталь более твердой и износостойкой. Рельсовую сталь может стать еще качественнее с помощью микролегирующих добавок: ванадия, титана и циркония.

Широкий спектр требований, предъявляемых в связи с этим к качеству железнодорожных рельсов, требует совершенствования технологических процессов, разработки, опробования и внедрения новых технологий и использования прогрессивных процессов в области производства рельсов.

Основной причиной малой распространенности производства рельсов из электростали является целевая направленность строительства современных электросталеплавильных цехов с печами большой емкости на утилизацию региональных ресурсов скрапа и обеспечение регионов металлопродукцией промышленного и строительного назначения. При этом достигаются достаточно высокая экономическая эффективность и конкурентоспособность.

1. Общая характеристика рельсовых сталей

Производство рельсов в нашей стране составляет около 3,5 % от общего производства готового проката, а грузонапряженность железных дорог в 5 раз выше, чем в США, и в 8...12 раз выше, чем на дорогах других развитых капиталистических стран. Это налагает особо высокие требования к качеству рельсов и стали для их изготовления.

Рельсы подразделяют:

- по типам Р50, Р65, Р65К (для наружных нитей кривых участков пути), Р75;

- категориям качества: В - рельсы термоупрочненные высшего качества, T1, T2 - рельсы термоупрочненные, Н - рельсы нетермоупрочненные;

- наличию болтовых отверстий: с отверстиями на обоих концах, без отверстий;

- способу выплавки стали: М - из мартеновской стали, К - из конвертерной стали, Э - из электростали;

- виду исходных заготовок: из слитков, из непрерывно-литых заготовок (НЛЗ);

- способу противофлокенной обработки: из вакуумированной стали, прошедшие контролируемое охлаждение, прошедшие изотермическую выдержку.

Химический состав рельсовых сталей представлен в таблице 1 в марках стали буквы М, К и Э обозначают способ выплавки стали, цифры - среднюю массовую долю углерода, буквы Ф, С, X, Т - легирование стали ванадием, кремнием, хромом и титаном соответственно.

Таблица 1 - Химический состав рельсовых сталей (ГОСТ 51685 - 2000)

Рельсы железнодорожные широкой колеи типов Р75 и Р65 изготовляют по ГОСТ 24182-80 из мартеновской стали М76 (0,71... 0,82 % С; 0,75...1,05 % Mn; 0,18...0,40 % Si; < 0,035 % Р и < 0,045 % S), и более легкие типа Р50 - из стали М74 (0,69...0,80 % С). После горячей прокатки все рельсы подвергают изотермической обработке для удаления водорода с целью устранения возможности образования флокенов. Рельсы поставляют для эксплуатации на железных дорогах незакаленными (сырыми) по всей длине и термоупрочненными по всей длине. Концы сырых рельсов подвергают поверхностной закалке с прокатного нагрева или с нагрева ТВЧ. Длина закаленного слоя от торца рельса 50...80 мм, а твердость закаленной части IIB 311...401. Сырые рельсы из стали М76 должны иметь ов > Ј 900 МПа и 5 > 4%. Технология изготовления рельсов должна гарантировать отсутствие в них вытянутых вдоль направления прокатки строчек неметаллических включений (глинозема) длиной более 2 мм (группа I) и более 8 мм (группа II), так как подобные строчки служат источником зарождения трещин контактной усталости в процессе эксплуатации.

Высокая грузонапряженность железных дорог привела к тому, что работоспособность сырых нетермоупрочненных рельсов перестала удовлетворять требованиям тяжелой работы сети железных дорог.

Дальнейшее повышение эксплуатационной стойкости термически упрочненных рельсов может быть достигнуто легированием рельсовой стали. Перспективным является легирование углеродистой рельсовой стали небольшими добавками ванадия (-0,05 %), применение легированных сталей типа 75ГСТ, 75ХГМФ и др., а так же применение термомеханической обработки.

2. Химический состав и требования к качеству рельсовой стали

рельсовый сталь химический углеродистый

Стали, не имеющие марки или шифра, обозначены номером (шифром) соответствующего стандарта и порядковым номером в этом стандарте. Например, стали в стандарте США ASTM А1 обозначены как ASTM/1, ASTM/2 и т.д., стали в стандарте Канады - как CN/1, CN/2 и т.д., стали в стандартах Австралии в соответствии с шифром стандарта обозначены как AS/1 (стандарт AS 1085 р.1) и AS/11 (стандарт AS 1085 р.11).

Содержание углерода в рельсовой стали устанавливается в зависимости от размеров поперечного сечения рельса. В общем виде размеры рельса принято характеризовать величиной массы его погонного метра (кг/пог.м). Чем больше масса погонного метра, тем выше должно быть содержание углерода в рельсовой стали.

Марганец действует, как углерод, повышая уровень прочности и износостойкости горячекатаных рельсов. В связи с этим в стандарте Австралии AS 1085 р.1, наряду с содержанием отдельно углерода и марганца, нормируется также суммарный показатель их содержания (С+Mn/5). В стандарте ASTM А1 при высоком содержании марганца ограничено содержание никеля, хрома и молибдена, что нужно для получения однотипной структуры рельсовой стали путем обеспечения заданного уровня прокаливаемости. В марках сталей В, 3В и 90В (стандарты BS 11, ISO 5003 и UIC 860) уменьшение содержания углерода скомпенсировано увеличением содержания марганца.

В стандартах России (ГОСТ 24182, 18267) кроме пределов содержания основных химических элементов - углерода, кремния, марганца, фосфора и серы, нормируемых в большинстве зарубежных стандартов, установлены пределы содержания микролегирующих добавок: ванадий (марки стали М76В и М74В), цирконий (марки стали М76Ц, К74Ц и М74Ц), титан (марки стали М76Т, К74Т и М74Т) и ванадий вместе с титаном (марка стали М76ВТ), ограничено содержание мышьяка < 0,15% для сталей из керченских руд.

Рельсовые стали отечественного производства близки по содержанию марганца, кремния, фосфора и серы. Марки рельсовых сталей для определенного размерного типа рельса различаются микролегирующими добавками. Такие стали являются практически аналогами, поэтому в Сводном перечне они помещены друг за другом с указанием в каждой строке соответствующих им зарубежных аналогов. Повторение одной марки стали в двух и более строках Сводного перечня связано с тем, что имеется более одного аналога в стандартах одной страны. Например, в первой строке Сводного перечня указана отечественная марка стали М76 и её аналоги: по стандарту США ASTM А1 - ASTM/1, по стандарту Японии JIS 1124-1124, по стандарту Австралии AS 1085 р.11 - AS/11, по стандарту Канады CNR1 - CN/1 и по международному стандарту ISO 5003 - 2А. Во второй строке Сводного перечня для той же марки стали М76 указаны другие зарубежные аналоги: по стандарту США AREA сталь обозначена AREA/1, по стандарту Австралии AS 1085 р.1 - AS/1 и по стандарту Канады CNR12 - CN/2. Стали CN/1 и CN/2 различаются содержанием кремния, которое зависит от способа выплавки стали.

Значительное улучшение чистоты рельсовой стали и повышение её металлургического качества в России достигнуто в результате перехода от ковшового раскисления стали алюминием к раскислению её комплексным ванадий-кремний-кальциевыми, кремний-магний-титановыми и кальций-циркониевыми лигатурами. Комплексное раскисление рельсовой стали перечисленными лигатурами без применения алюминия позволило исключить образование в головке рельсов строчек включений глинозема, являвшихся очагами зарождения контактно-усталостных повреждений рельсов. Отсутствие строчечных неметаллических включений в головке рельсов привело к повышению их эксплуатационной стойкости.

В большинстве действующих стандартов право выбора способа производства стали предоставляется изготовителю, а информация о способе производства стали сообщается потребителю с помощью специальной маркировки рельсов. Известны случаи, когда в зависимости от способа разливки стали устанавливают различные пределы содержания химических элементов. Так, в канадском стандарте содержание кремния в стали при разливке в слитки составляет 0,10-0,25 %, при непрерывной разливке стали - 0,16-0.35 %.

Важным элементом технологической цепочки производства железнодорожных рельсов является противофлокенная обработка, заключающаяся в специальном режиме охлаждения горячекатаных рельсов тяжелых типов (40 кг/пог.м), обеспечивающем удаление водорода. либо в вакуумной дегазации жидкого рельсового металла перед разливкой. В стандарте канадских государственных железных дорог установлена норма максимально допустимого содержания водорода в вакуумированной стали.

Контроль технологии производства рельсовой стали в горячекатаном состоянии осуществляется путем определения механических свойств при испытании на растяжение образцов, вырезанных из головки рельсов, и измерением твердости по Бринеллю. При испытаниях на растяжение в большинстве случаев определяют временное сопротивление разрыву (предел прочности) и относительное удлинение, иногда - относительное поперечное сужение.

Производится также контроль макроструктуры горячекатаных рельсов с оценкой качества по специально разработанным шкалам макроструктур.

Качество рельсов оценивается также по отсутствию или наличию признаков разрушения отрезков рельсов в результате удара падающим грузом. Вес падающего груза (как правило, 1000 кг), высота падения груза и расстояние между опорами, на которые в горизонтальном положении устанавливается испытываемый отрезок (проба) рельса, задаются в зависимости от типоразмера рельса по уравнению или специальной таблице, приведенным в соответствующем стандарте. Удар производится по середине между опорами рельсовой пробы.

Свойства термически упрочненных рельсов оцениваются в стандартах механическими характеристиками: при испытаниях вырезанных из головки рельса образцов на растяжение, ударной вязкостью при комнатной и пониженных (-40°С, -60°С) температурах испытания и твердостью, измеряемой по Бринеллю, Роквеллу, Виккерсу и Шору. Нормируются также микроструктура и глубина закаленного слоя, которые зависят как от химического состава рельсовой стали, определяющего уровень её прокаливаемости, так и от технологии термической обработки.

3. Технология производства рельсовых сталей

В кислородных конвертерах верхнего и комбинированного дутья дефос-форация начинается с первых минут продувки. Однако, при содержании углерода около 0,6 - 0,9% содержание фосфора в металле стабилизируется или даже несколько увеличивается. Дальнейшее понижение концентрации фосфора наблюдается при значительно более низком содержании углерода. Поэтому при высоком содержании фосфора в чугуне и прекращении продувки на марочном содержании углерода концентрация фосфора в металле обычно выше требуемого содержания его в стали.

Для получения требуемого содержания фосфора в высокоуглеродистой стали, которую выплавляют с прекращением продувки на марочном содержании углерода, используют обновление шлака. При этом понижается производительность сталеплавильных агрегатов, увеличиваются расходы шлакообразующих и чугуна.

На разных заводах повалку конвертера для слива шлака проводят при содержании углерода 1,2 - 2,5%. При содержании фосфора в чугуне 0,20 - 0,30% шлак обновляют дважды при содержании углерода 2,5 - 3,0% и 1,3 - 1,5%. После скачивания шлака в конвертер присаживают свежеобожженую известь. Содержание FeO в шлаке поддерживают в пределах 12 - 18%, изменяя уровень фурмы над ванной. Для разжижения шлака по ходу продувки присаживают плавиковый шпат в количестве 5 - 10% от массы извести. Эти мероприятия позволяют к моменту окончания продувки до марочного содержания углерода в стали получить концентрацию фосфора не более 0,010 - 0,020%.

Во время выпуска металл раскисляют в ковше ферросилицием и алюминием. При этом обязательной операцией является отсечка конвертерного шлака. Попадание его в ковш приводит к рефосфорации металла при раскислении и, особенно, при внепечной обработке под восстановительным шлаком для десульфурации.

Продувка металла в конвертере до низкого содержания углерода позволяет провести глубокую его дефосфорацию. В связи с этим некоторое распространение получила технология выплавки в кислородных конвертерах рельсовой и кордовой стали, которая предусматривает окисление углерода до 0,03 - 0,07% и последующее науглероживанием металла в ковше нефтяным коксом, антрацитом и др. Использование такой технологии требует наличия чистых по вредным примесям и газам карбюризаторов. Это вызывает необходимость в специальной их подготовке, организация которой может создавать значительные трудности.

На некоторых предприятиях используется технология производства рельсовой и кордовой стали в кислородных конвертерах путем выплавки низкоуглеродистого металла и последующего науглероживания его жидким чугуном, который заливают в сталеразливочный ковш перед выпуском плавки из конвертера. Ее использование предполагает наличие чугуна достаточно чистого по содержанию фосфора. Для получения содержания углерода в стали в требуемых пределах окончательное науглероживание раскисленного металла проводят твердыми карбюризаторами в процессе вакуумной обработки.

Вследствие низкого содержания кислорода в высокоуглеродистой рельсовой стали высокая степень чистоты ее по оксидным включениям может быть получена и без применения таких относительно сложных видов внепечной обработки, как вакуумирование или обработка на УКП. Обычно для этого достаточно продувки металла в ковше инертным газом. При этом, чтобы избежать вторичного окисления металла, ковшевой шлак должен содержать минимальное количество оксидов железа и марганца.

С этой целью при выплавке рельсовой стали в дуговых сталеплавильных печах, конструкция которых не предусматривает эркерного выпуска металла, рекомендуется проводить сокращенный восстановительный период плавки. Для этого после получения требуемого содержания фосфора в металле шлак окислительного периода плавки из печи сливают. Проводят предварительное раскисление стали кремнием и марганцем, которые вводят в печь в виде ферросилиция и ферромарганца или силикомарганца. Затем наводят в печи новый шлак, который перед выпуском плавки раскисляют молотым коксом или электродным боем и гранулированным алюминием. Возможно также использование с этой целью порошкового ферросилиция. Окончательное раскисление стали кремнием и алюминием производят в ковше во время выпуска. После выпуска в ковш металл продувают инертным газом для гомогенизации и, главным образом, для удаления скоплений А12О3. При эксплуатации рельсов скопления А12О3 вызывают возникновение расслоений в рабочей части головки рельса. Следствием расслоения может быть полное отделение отслоенных пластинок на головке рельса и преждевременный выход его из строя.

Более эффективным способом предупреждения образования расслоений в рельсовой стали, выплавленной как в конвертерах, так и в дуговых сталеплавильных печах, является модифицирование неметаллических включений обработкой стали кальцием. Обычно с этой целью используют силикокальций, который вводят в металл в составе порошковой проволоки или вдувают в потоке аргона через погружаемые в расплав фурмы.

4. Производство рельсовой стали с применением модификаторов

Рельсы выходят из строя по дефектам контактно-усталостного происхождения. В порядке одиночной смены из эксплуатации по этим дефектам до 50 % рельсов. Причиной образования дефектов является высокотвердые неметаллические включения типа глинозема (А12 O 3) и алюмосиликатов, вытягивающихся в строчки вдоль направления прокатки. В литом металле они образуют скопления, которые при прокатке дробятся и вытягиваются, образуя строчки, длина которых может достигать десятков миллиметров. Сама по себе величина отдельных включений глинозема (корунда) также влияет на величину напряжений и деформации в микрообъемах металла. Показано, что наибольшую опасность в рельсовой стали представляют включения корунда 30 мк [I]. По другим данным, строчечные включения корунда становятся опасными, снижающими усталостные свойства уже при величине 7-100 микромикрон .

Потому все работы при производстве рельсовой стали направлены на снижение как размера остроугольных включений, так и поиска решений по снижению длины их строчек в прокатанном металле.

В некоторой степени снизить загрязненность металла позволяет продувка металла в ковше инертным газом, вакуумирование, применение (одновременно с продувкой) наводки нового шлака твердыми шлаковыми смесями с отсечкой в ходе выпуска металла из сталеплавильного агрегата печного шлака [З]. Однако более координально проблема решается при условии применения для обработки рельсовой стали модификаторов.

На НТМК на первых стадиях экспериментов были применены модификаторы, содержащие кальций и цирконий. При этом на опытных плавках при наполнение ковша металлом (мартеновская плавка 440 т) на 1/5 его высоты порциями вводили FeSiCa (3,2 кг/тон) , а после него порциями - SiZr - 0,45 кг/тон. Дачу ферросплавов заканчивали при наполнении 2/3 ковша. Обнаруживали, что на опытном металле длина строчек 4 мм отсутствует, на обычном - более 20 % образцов со строчками 4-16 мм.

В дальнейшем , при использовании комплексных сплавов на базе силикокальция с цирконием и алюминием, расход 1,9 кг/тн. Оптимальный состав применяемого модификатора 6-7% Zr и 5-7% А1. При этом удалось обеспечить уровень ударной вязкости рельсов не менее 0,25 Mg 7/ M 2, а строчек длиной более 2 мм не обнаруживалось.

Украинские исследователи провели работу по опробованию лигатур с Mg и Ti при выплавке рельсовой стали в конвертерах и мартеновских печах [б]. Применение сплавов с Mg, Ti и А1 (55-58% Si, 4-5% Mg, 4-7% Ti) для модифицирования рельсовой стали в ковше позволило локализовать усадочные дефекты в прибыльной части слитка, уменьшить ликвацию элементов, на 27-32%о повысить износостойкость металла, но длина строчек глинозема была значительной, в среднем 5,3 мм. После использования лигатур без алюминия удалось снизить количество глиноземных включений и длину строчек. Присадка комплексной лигатуры СмтТи в ковш без присадки А1 обеспечила снижение пораженности рельсов поверхностными дефектами, в основном по пленам, на 5-8%о, добиться повышения выхода рельсов 1 сорта на 1,8-4,5%о. Длина строчек не достигала 2 мм, эксплуатационная стойкость и надежность опытных рельсов, соответственно, на 20-25%о выше, чем из стали, раскисленной алюминием.

Следующей попыткой снижения загрязненности рельсов строчечными оксидными включениями явилось применение для модифицирования стали сплава, содержащего барий алюмобария . При этом достигнуто более глубокое раскисление металла, общее содержание кислорода с 0,0036-0,006%о до 0,0026%о и уменьшение анизотропии пластических свойств. Модификатор присаживали в ковш.

Четвертая группа попыток по улучшению качества рельсовой стали связана с появлением в составе модификаторов, идущих для обработки жидкого металла в ковше, ванадия. Причем ванадием металл микролегируется (его содержание 0,005-0,01%) из имеющего в составе лигатур (содержание компонентов в таких лигатурах не установлено) и из природного легированного ванадием чугуна . В этой же работе приводятся данные по микролегированию цирконием ванадийсодержащего металла. При этом достигается повышение предельной контактной выносливости термоупрочненных рельсов на 7,2% и снижение их износа на 23%. Отмечается , что наиболее высокую надежность и долговечность имеют рельсы из стали, раскисленной кальцийсодержащей лигатурой с ванадием.

Опыт использования комплексных ферросплавов с ванадием и присадкой их в ковш при получении рельсовой стали описан в работах проведенных на Кузнецком металлургическом комбинате .

Микролегирование в ковше, из-за имеющихся и нерегулируемых процессов при вводе модификаторов в ковш (окисление металла, температура, момент присадки) носит не стабильный характер, усвоение легкоокисляющихся компонентов лигатур (магния, кальция, циркония, ванадия) низкое, а расход их составляет 3-4 кг на тонну, поэтому группа исследователей на комбинате ОАО "Азовсталь" при производстве рельсовой стали изменили модифицирование с помощью ввода проволоки со сплавом КМКТ (содержание элементов не сообщается) .

Таким образом, проблема повышения усвоения легкоокисляющихся элементов, вводимых в жидкий металл в составе комплексных сплавов, существует. Поэтому разработка и применение новых методов введения модификаторов, в частности, на разливке имеет актуальное значение.

Заключение

Действующая на отечественных металлургических комбинатах технология производства железнодорожных рельсов обеспечивает необходимое качество и стойкость продукции. Однако в силу ряда причин рельсовая сталь в Российской Федерации выплавляется в мартеновских печах, что ограничивает технологические возможности металлургов для существенного и резкого повышения качества стали, используемой для производства рельсов.

Рельсовую сталь, содержащую 0,60 - 0,80% С, и аналогичную ей по составу кордовую выплавляют в кислородных конвертерах и дуговых сталеплавильных печах. Наиболее сложной задачей при производстве этих марок стали является получение низкого содержания фосфора в металле при прекращении продувки на марочном содержании углерода.

В дуговых сталеплавильных печах рельсовую и кордовую сталь выплавляют по обычной технологии, применяя меры для интенсивного удаления фосфора из металла - присадки железной руды в завалку и в начале короткого окислительного периода с непрерывным сходом шлака и его обновлением присадками извести. При этом также обязательно используются мероприятия, направленные на предотвращение попадания печного шлака в сталеразливочный ковш.

Международным союзом железных дорог (МСЖД) разработан международный стандарт UIС 860, касающийся качества и способов изготовления рельсовых сталей и условий приемки рельсов разных весовых категорий, нетермообработанных, изготовленных из обычных и износоустойчивых сталей. Свойства рельсовых сталей определяются прежде всего содержанием углерода. Оно было принято за основу при определении аналогов сталей в различных стандартах.

Рельсовая сталь должна обладать высокой прочностью, износостойкостью и не иметь местных концентратов напряжения металлургического происхождения. В средней трети ширины подошвы и на верхней плоскости головки допускаются единичные пологие зачистки плен, забоин, рисок глубиной до 0 5 мм, a IB остальных местах - до 1 мм.

Список использованных источников

1) Кудрин, В.А. Технология получения качественной стали [Текст] // В.А. Кудрин, В.М. Парма. - М: Металлургия, 1984. 320 с.

2) Поволоцкий, Д. Я.Электрометаллургия стали и ферросплавов [Текст] / Д.Я. Поволоцкий, В. Е.Рощин, М. А. Рысс и др. - М.: Металлургия, 1984. - 568с.

3) Симонян, Л.М. Металлургия спецсталей. Теория и технология спецэлектрометаллургии: Курс лекций [Текст]. / Л.М. Симонян, А.Е. Семин, А.И. Кочетов. - М.: МИСиС, 2007. - 180 с.

4) Кудрин, В.А. Теория и технология производства стали: Учебник для вузов. - М.: «Мир», ООО «Издательство ACT», 2003.- 528 с.

5) Гольдштейн, М.И. Специальные стали: учебник для вузов [Текст] / М.И. Гольдштейн, Грачев С.В., Векслер Ю.Г. - М.: Металлургия, 1985. - 408 с.

6) Падерин, С.Н. Теория и расчеты металлургических систем и процессов [Текст]. / С.Н. Падерин, В.В. Филиппов. - М.: МИСиС, 2002. - 334 с.

7) Братковский, Е.В., Электрометаллургия стали и спецэлектро-металлургия [Текст] / Е.В. Братковский, А.В. Заводяный.- Новотроицк: НФ МИСиС, 2008.

8) Кудрин, В.А. Теория и технология производства стали: учебник для вузов [Текст] / Ю.В. Кряковский, А.Г. Шалимов. - М.: «Мир», ООО «Издательство АСТ», 2003. - 528 с.

9) Воскобойников, В.Г. Общая металлургия: учебник для вузов [Текст] / В.Г. Кудрин, А.М. Якушев. - М.: ИКЦ «Академкнига», 2002. - 768 с.

10) Альперович, М.Е. Вакуумный дуговой переплав и его экономическая эффективность/ М.Е. Альперович. -- М.: Металлургия, 1979. -- 235 с.

Размещено на Allbest.ru

Подобные документы

    Производство стали в кислородных конвертерах. Легированные стали и сплавы. Структура легированной стали. Классификация и маркировака стали. Влияние легирующих элементов на свойства стали. Термическая и термомеханическая обработка легированной стали.

    реферат , добавлен 24.12.2007

    Металлургия стали как производство. Виды стали. Неметаллические включения в стали. Раскисление и легирование стали. Шихтовые материалы сталеплавильного производства. Конвертерное, мартеновское производство стали. Выплавка стали в электрических печах.

    контрольная работа , добавлен 24.05.2008

    Классификация и маркировка стали. Характеристика способов производства стали. Основы технологии выплавки стали в мартеновских, дуговых и индукционных печах. Универсальный агрегат "Conarc". Отечественные агрегаты ковш-печь для внепечной обработки стали.

    курсовая работа , добавлен 11.08.2012

    Основные способы производства стали. Конвертерный способ. Мартеновский способ. Электросталеплавильный способ. Разливка стали. Пути повышения качества стали. Обработка жидкого металла вне сталеплавильного агрегата. Производство стали в вакуумных печах.

    курсовая работа , добавлен 02.01.2005

    Строение и свойства стали, исходные материалы. Производство стали в конвертерах, в мартеновских печах, в дуговых электропечах. Выплавка стали в индукционных печах. Внепечное рафинирование стали. Разливка стали. Специальные виды электрометаллургии стали.

    реферат , добавлен 22.05.2008

    История развития выплавки стали в дуговых электропечах. Технология плавки стали на свежей углеродистой шихте с окислением. Выплавка стали в двухванном сталеплавильном агрегате. Внеагрегатная обработка металла в цехе. Разливка стали на сортовых МНЛЗ.

    отчет по практике , добавлен 10.03.2011

    Сферы применения инструментальной углеродистой стали и ее потребительские свойства. Разделение инструментальной углеродистой стали по химическому составу на качественную и высококачественную. Технологии производства и технико-экономическая оценка.

    курсовая работа , добавлен 12.12.2011

    Анализ мирового опыта производства трансформаторной стали. Технология выплавки трансформаторной стали в кислородных конвертерах. Ковшевая обработка трансформаторной стали. Конструкция и оборудование МНЛЗ. Непрерывная разливка трансформаторной стали.

    дипломная работа , добавлен 31.05.2010

    Механизмы упрочнения низколегированной стали марки HC420LA. Дисперсионное твердение. Технология производства. Механические свойства высокопрочной низколегированной стали исследуемой марки. Рекомендованный химический состав. Параметры и свойства стали.

    контрольная работа , добавлен 16.08.2014

    Применение и классификация стальных труб. Характеристика трубной продукции из различных марок стали, стандарты качества стали при ее изготовлении. Методы защиты металлических труб от коррозии. Состав и применение углеродистой и легированной стали.